mirror of
https://github.com/huggingface/diffusers.git
synced 2026-01-29 07:22:12 +03:00
* add ChronoEdit * add ref to original function & remove wan2.2 logics * Update src/diffusers/pipelines/chronoedit/pipeline_chronoedit.py Co-authored-by: YiYi Xu <yixu310@gmail.com> * Update src/diffusers/pipelines/chronoedit/pipeline_chronoedit.py Co-authored-by: YiYi Xu <yixu310@gmail.com> * add ChronoeEdit test * add docs * add docs * make fix-copies * fix chronoedit test --------- Co-authored-by: wjay <wjay@nvidia.com> Co-authored-by: YiYi Xu <yixu310@gmail.com> Co-authored-by: Sayak Paul <spsayakpaul@gmail.com>
177 lines
5.7 KiB
Python
177 lines
5.7 KiB
Python
# Copyright 2025 The HuggingFace Team.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
|
|
import unittest
|
|
|
|
import torch
|
|
from PIL import Image
|
|
from transformers import (
|
|
AutoTokenizer,
|
|
CLIPImageProcessor,
|
|
CLIPVisionConfig,
|
|
CLIPVisionModelWithProjection,
|
|
T5EncoderModel,
|
|
)
|
|
|
|
from diffusers import (
|
|
AutoencoderKLWan,
|
|
ChronoEditPipeline,
|
|
ChronoEditTransformer3DModel,
|
|
FlowMatchEulerDiscreteScheduler,
|
|
)
|
|
|
|
from ...testing_utils import enable_full_determinism
|
|
from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_IMAGE_PARAMS, TEXT_TO_IMAGE_PARAMS
|
|
from ..test_pipelines_common import PipelineTesterMixin
|
|
|
|
|
|
enable_full_determinism()
|
|
|
|
|
|
class ChronoEditPipelineFastTests(PipelineTesterMixin, unittest.TestCase):
|
|
pipeline_class = ChronoEditPipeline
|
|
params = TEXT_TO_IMAGE_PARAMS - {"cross_attention_kwargs", "height", "width"}
|
|
batch_params = TEXT_TO_IMAGE_BATCH_PARAMS
|
|
image_params = TEXT_TO_IMAGE_IMAGE_PARAMS
|
|
image_latents_params = TEXT_TO_IMAGE_IMAGE_PARAMS
|
|
required_optional_params = frozenset(
|
|
[
|
|
"num_inference_steps",
|
|
"generator",
|
|
"latents",
|
|
"return_dict",
|
|
"callback_on_step_end",
|
|
"callback_on_step_end_tensor_inputs",
|
|
]
|
|
)
|
|
test_xformers_attention = False
|
|
supports_dduf = False
|
|
|
|
def get_dummy_components(self):
|
|
torch.manual_seed(0)
|
|
vae = AutoencoderKLWan(
|
|
base_dim=3,
|
|
z_dim=16,
|
|
dim_mult=[1, 1, 1, 1],
|
|
num_res_blocks=1,
|
|
temperal_downsample=[False, True, True],
|
|
)
|
|
|
|
torch.manual_seed(0)
|
|
# TODO: impl FlowDPMSolverMultistepScheduler
|
|
scheduler = FlowMatchEulerDiscreteScheduler(shift=7.0)
|
|
text_encoder = T5EncoderModel.from_pretrained("hf-internal-testing/tiny-random-t5")
|
|
tokenizer = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-t5")
|
|
|
|
torch.manual_seed(0)
|
|
transformer = ChronoEditTransformer3DModel(
|
|
patch_size=(1, 2, 2),
|
|
num_attention_heads=2,
|
|
attention_head_dim=12,
|
|
in_channels=36,
|
|
out_channels=16,
|
|
text_dim=32,
|
|
freq_dim=256,
|
|
ffn_dim=32,
|
|
num_layers=2,
|
|
cross_attn_norm=True,
|
|
qk_norm="rms_norm_across_heads",
|
|
rope_max_seq_len=32,
|
|
image_dim=4,
|
|
)
|
|
|
|
torch.manual_seed(0)
|
|
image_encoder_config = CLIPVisionConfig(
|
|
hidden_size=4,
|
|
projection_dim=4,
|
|
num_hidden_layers=2,
|
|
num_attention_heads=2,
|
|
image_size=32,
|
|
intermediate_size=16,
|
|
patch_size=1,
|
|
)
|
|
image_encoder = CLIPVisionModelWithProjection(image_encoder_config)
|
|
|
|
torch.manual_seed(0)
|
|
image_processor = CLIPImageProcessor(crop_size=32, size=32)
|
|
|
|
components = {
|
|
"transformer": transformer,
|
|
"vae": vae,
|
|
"scheduler": scheduler,
|
|
"text_encoder": text_encoder,
|
|
"tokenizer": tokenizer,
|
|
"image_encoder": image_encoder,
|
|
"image_processor": image_processor,
|
|
}
|
|
return components
|
|
|
|
def get_dummy_inputs(self, device, seed=0):
|
|
if str(device).startswith("mps"):
|
|
generator = torch.manual_seed(seed)
|
|
else:
|
|
generator = torch.Generator(device=device).manual_seed(seed)
|
|
image_height = 16
|
|
image_width = 16
|
|
image = Image.new("RGB", (image_width, image_height))
|
|
inputs = {
|
|
"image": image,
|
|
"prompt": "dance monkey",
|
|
"negative_prompt": "negative", # TODO
|
|
"height": image_height,
|
|
"width": image_width,
|
|
"generator": generator,
|
|
"num_inference_steps": 2,
|
|
"guidance_scale": 6.0,
|
|
"num_frames": 5,
|
|
"max_sequence_length": 16,
|
|
"output_type": "pt",
|
|
}
|
|
return inputs
|
|
|
|
def test_inference(self):
|
|
device = "cpu"
|
|
|
|
components = self.get_dummy_components()
|
|
pipe = self.pipeline_class(**components)
|
|
pipe.to(device)
|
|
pipe.set_progress_bar_config(disable=None)
|
|
|
|
inputs = self.get_dummy_inputs(device)
|
|
video = pipe(**inputs).frames
|
|
generated_video = video[0]
|
|
self.assertEqual(generated_video.shape, (5, 3, 16, 16))
|
|
|
|
# fmt: off
|
|
expected_slice = torch.tensor([0.4525, 0.4520, 0.4485, 0.4534, 0.4523, 0.4522, 0.4529, 0.4528, 0.5022, 0.5064, 0.5011, 0.5061, 0.5028, 0.4979, 0.5117, 0.5192])
|
|
# fmt: on
|
|
|
|
generated_slice = generated_video.flatten()
|
|
generated_slice = torch.cat([generated_slice[:8], generated_slice[-8:]])
|
|
self.assertTrue(torch.allclose(generated_slice, expected_slice, atol=1e-3))
|
|
|
|
@unittest.skip("Test not supported")
|
|
def test_attention_slicing_forward_pass(self):
|
|
pass
|
|
|
|
@unittest.skip("TODO: revisit failing as it requires a very high threshold to pass")
|
|
def test_inference_batch_single_identical(self):
|
|
pass
|
|
|
|
@unittest.skip(
|
|
"ChronoEditPipeline has to run in mixed precision. Save/Load the entire pipeline in FP16 will result in errors"
|
|
)
|
|
def test_save_load_float16(self):
|
|
pass
|