1
0
mirror of https://github.com/huggingface/diffusers.git synced 2026-01-27 17:22:53 +03:00
Files
diffusers/tests/single_file/test_model_vae_single_file.py
2025-09-30 13:28:34 +05:30

92 lines
3.1 KiB
Python

# coding=utf-8
# Copyright 2025 HuggingFace Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import torch
from diffusers import (
AutoencoderKL,
)
from ..testing_utils import (
enable_full_determinism,
load_hf_numpy,
numpy_cosine_similarity_distance,
torch_device,
)
from .single_file_testing_utils import SingleFileModelTesterMixin
enable_full_determinism()
class TestAutoencoderKLSingleFile(SingleFileModelTesterMixin):
model_class = AutoencoderKL
ckpt_path = (
"https://huggingface.co/stabilityai/sd-vae-ft-mse-original/blob/main/vae-ft-mse-840000-ema-pruned.safetensors"
)
repo_id = "stabilityai/sd-vae-ft-mse"
main_input_name = "sample"
base_precision = 1e-2
def get_file_format(self, seed, shape):
return f"gaussian_noise_s={seed}_shape={'_'.join([str(s) for s in shape])}.npy"
def get_sd_image(self, seed=0, shape=(4, 3, 512, 512), fp16=False):
dtype = torch.float16 if fp16 else torch.float32
image = torch.from_numpy(load_hf_numpy(self.get_file_format(seed, shape))).to(torch_device).to(dtype)
return image
def test_single_file_inference_same_as_pretrained(self):
model_1 = self.model_class.from_pretrained(self.repo_id).to(torch_device)
model_2 = self.model_class.from_single_file(self.ckpt_path, config=self.repo_id).to(torch_device)
image = self.get_sd_image(33)
generator = torch.Generator(torch_device)
with torch.no_grad():
sample_1 = model_1(image, generator=generator.manual_seed(0)).sample
sample_2 = model_2(image, generator=generator.manual_seed(0)).sample
assert sample_1.shape == sample_2.shape
output_slice_1 = sample_1.flatten().float().cpu()
output_slice_2 = sample_2.flatten().float().cpu()
assert numpy_cosine_similarity_distance(output_slice_1, output_slice_2) < 1e-4
def test_single_file_arguments(self):
model_default = self.model_class.from_single_file(self.ckpt_path, config=self.repo_id)
assert model_default.config.scaling_factor == 0.18215
assert model_default.config.sample_size == 256
assert model_default.dtype == torch.float32
scaling_factor = 2.0
sample_size = 512
torch_dtype = torch.float16
model = self.model_class.from_single_file(
self.ckpt_path,
config=self.repo_id,
sample_size=sample_size,
scaling_factor=scaling_factor,
torch_dtype=torch_dtype,
)
assert model.config.scaling_factor == scaling_factor
assert model.config.sample_size == sample_size
assert model.dtype == torch_dtype