mirror of
https://github.com/huggingface/diffusers.git
synced 2026-01-27 17:22:53 +03:00
* update
* update
* update
* update
* update
* merge main
* Revert "merge main"
This reverts commit 65efbcead5.
1099 lines
44 KiB
Python
1099 lines
44 KiB
Python
# coding=utf-8
|
|
# Copyright 2025 HuggingFace Inc.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
|
|
import gc
|
|
import random
|
|
import unittest
|
|
|
|
import numpy as np
|
|
import torch
|
|
from huggingface_hub import hf_hub_download
|
|
from PIL import Image
|
|
from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer
|
|
|
|
from diffusers import (
|
|
AsymmetricAutoencoderKL,
|
|
AutoencoderKL,
|
|
DDIMScheduler,
|
|
DPMSolverMultistepScheduler,
|
|
EulerAncestralDiscreteScheduler,
|
|
LCMScheduler,
|
|
LMSDiscreteScheduler,
|
|
PNDMScheduler,
|
|
StableDiffusionInpaintPipeline,
|
|
UNet2DConditionModel,
|
|
)
|
|
|
|
from ...testing_utils import (
|
|
Expectations,
|
|
backend_empty_cache,
|
|
backend_max_memory_allocated,
|
|
backend_reset_max_memory_allocated,
|
|
backend_reset_peak_memory_stats,
|
|
enable_full_determinism,
|
|
floats_tensor,
|
|
load_image,
|
|
load_numpy,
|
|
nightly,
|
|
require_torch_accelerator,
|
|
slow,
|
|
torch_device,
|
|
)
|
|
from ..pipeline_params import (
|
|
TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS,
|
|
TEXT_GUIDED_IMAGE_INPAINTING_PARAMS,
|
|
TEXT_TO_IMAGE_CALLBACK_CFG_PARAMS,
|
|
)
|
|
from ..test_pipelines_common import (
|
|
IPAdapterTesterMixin,
|
|
PipelineKarrasSchedulerTesterMixin,
|
|
PipelineLatentTesterMixin,
|
|
PipelineTesterMixin,
|
|
)
|
|
|
|
|
|
enable_full_determinism()
|
|
|
|
|
|
class StableDiffusionInpaintPipelineFastTests(
|
|
IPAdapterTesterMixin,
|
|
PipelineLatentTesterMixin,
|
|
PipelineKarrasSchedulerTesterMixin,
|
|
PipelineTesterMixin,
|
|
unittest.TestCase,
|
|
):
|
|
pipeline_class = StableDiffusionInpaintPipeline
|
|
params = TEXT_GUIDED_IMAGE_INPAINTING_PARAMS
|
|
batch_params = TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS
|
|
image_params = frozenset([])
|
|
# TO-DO: update image_params once pipeline is refactored with VaeImageProcessor.preprocess
|
|
image_latents_params = frozenset([])
|
|
callback_cfg_params = TEXT_TO_IMAGE_CALLBACK_CFG_PARAMS.union({"mask", "masked_image_latents"})
|
|
|
|
def get_dummy_components(self, time_cond_proj_dim=None):
|
|
torch.manual_seed(0)
|
|
unet = UNet2DConditionModel(
|
|
block_out_channels=(32, 64),
|
|
time_cond_proj_dim=time_cond_proj_dim,
|
|
layers_per_block=2,
|
|
sample_size=32,
|
|
in_channels=9,
|
|
out_channels=4,
|
|
down_block_types=("DownBlock2D", "CrossAttnDownBlock2D"),
|
|
up_block_types=("CrossAttnUpBlock2D", "UpBlock2D"),
|
|
cross_attention_dim=32,
|
|
)
|
|
scheduler = PNDMScheduler(skip_prk_steps=True)
|
|
torch.manual_seed(0)
|
|
vae = AutoencoderKL(
|
|
block_out_channels=[32, 64],
|
|
in_channels=3,
|
|
out_channels=3,
|
|
down_block_types=["DownEncoderBlock2D", "DownEncoderBlock2D"],
|
|
up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D"],
|
|
latent_channels=4,
|
|
)
|
|
torch.manual_seed(0)
|
|
text_encoder_config = CLIPTextConfig(
|
|
bos_token_id=0,
|
|
eos_token_id=2,
|
|
hidden_size=32,
|
|
intermediate_size=37,
|
|
layer_norm_eps=1e-05,
|
|
num_attention_heads=4,
|
|
num_hidden_layers=5,
|
|
pad_token_id=1,
|
|
vocab_size=1000,
|
|
)
|
|
text_encoder = CLIPTextModel(text_encoder_config)
|
|
tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip")
|
|
|
|
components = {
|
|
"unet": unet,
|
|
"scheduler": scheduler,
|
|
"vae": vae,
|
|
"text_encoder": text_encoder,
|
|
"tokenizer": tokenizer,
|
|
"safety_checker": None,
|
|
"feature_extractor": None,
|
|
"image_encoder": None,
|
|
}
|
|
return components
|
|
|
|
def get_dummy_inputs(self, device, seed=0, img_res=64, output_pil=True):
|
|
# TODO: use tensor inputs instead of PIL, this is here just to leave the old expected_slices untouched
|
|
if output_pil:
|
|
# Get random floats in [0, 1] as image
|
|
image = floats_tensor((1, 3, 32, 32), rng=random.Random(seed)).to(device)
|
|
image = image.cpu().permute(0, 2, 3, 1)[0]
|
|
mask_image = torch.ones_like(image)
|
|
# Convert image and mask_image to [0, 255]
|
|
image = 255 * image
|
|
mask_image = 255 * mask_image
|
|
# Convert to PIL image
|
|
init_image = Image.fromarray(np.uint8(image)).convert("RGB").resize((img_res, img_res))
|
|
mask_image = Image.fromarray(np.uint8(mask_image)).convert("RGB").resize((img_res, img_res))
|
|
else:
|
|
# Get random floats in [0, 1] as image with spatial size (img_res, img_res)
|
|
image = floats_tensor((1, 3, img_res, img_res), rng=random.Random(seed)).to(device)
|
|
# Convert image to [-1, 1]
|
|
init_image = 2.0 * image - 1.0
|
|
mask_image = torch.ones((1, 1, img_res, img_res), device=device)
|
|
|
|
if str(device).startswith("mps"):
|
|
generator = torch.manual_seed(seed)
|
|
else:
|
|
generator = torch.Generator(device=device).manual_seed(seed)
|
|
|
|
inputs = {
|
|
"prompt": "A painting of a squirrel eating a burger",
|
|
"image": init_image,
|
|
"mask_image": mask_image,
|
|
"generator": generator,
|
|
"num_inference_steps": 2,
|
|
"guidance_scale": 6.0,
|
|
"output_type": "np",
|
|
}
|
|
return inputs
|
|
|
|
def test_stable_diffusion_inpaint(self):
|
|
device = "cpu" # ensure determinism for the device-dependent torch.Generator
|
|
components = self.get_dummy_components()
|
|
sd_pipe = StableDiffusionInpaintPipeline(**components)
|
|
sd_pipe = sd_pipe.to(device)
|
|
sd_pipe.set_progress_bar_config(disable=None)
|
|
|
|
inputs = self.get_dummy_inputs(device)
|
|
image = sd_pipe(**inputs).images
|
|
image_slice = image[0, -3:, -3:, -1]
|
|
|
|
assert image.shape == (1, 64, 64, 3)
|
|
expected_slice = np.array([0.4703, 0.5697, 0.3879, 0.5470, 0.6042, 0.4413, 0.5078, 0.4728, 0.4469])
|
|
|
|
assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2
|
|
|
|
def test_stable_diffusion_inpaint_lcm(self):
|
|
device = "cpu" # ensure determinism for the device-dependent torch.Generator
|
|
components = self.get_dummy_components(time_cond_proj_dim=256)
|
|
sd_pipe = StableDiffusionInpaintPipeline(**components)
|
|
sd_pipe.scheduler = LCMScheduler.from_config(sd_pipe.scheduler.config)
|
|
sd_pipe = sd_pipe.to(device)
|
|
sd_pipe.set_progress_bar_config(disable=None)
|
|
|
|
inputs = self.get_dummy_inputs(device)
|
|
image = sd_pipe(**inputs).images
|
|
image_slice = image[0, -3:, -3:, -1]
|
|
|
|
assert image.shape == (1, 64, 64, 3)
|
|
expected_slice = np.array([0.4931, 0.5988, 0.4569, 0.5556, 0.6650, 0.5087, 0.5966, 0.5358, 0.5269])
|
|
|
|
assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2
|
|
|
|
def test_stable_diffusion_inpaint_lcm_custom_timesteps(self):
|
|
device = "cpu" # ensure determinism for the device-dependent torch.Generator
|
|
components = self.get_dummy_components(time_cond_proj_dim=256)
|
|
sd_pipe = StableDiffusionInpaintPipeline(**components)
|
|
sd_pipe.scheduler = LCMScheduler.from_config(sd_pipe.scheduler.config)
|
|
sd_pipe = sd_pipe.to(device)
|
|
sd_pipe.set_progress_bar_config(disable=None)
|
|
|
|
inputs = self.get_dummy_inputs(device)
|
|
del inputs["num_inference_steps"]
|
|
inputs["timesteps"] = [999, 499]
|
|
image = sd_pipe(**inputs).images
|
|
image_slice = image[0, -3:, -3:, -1]
|
|
|
|
assert image.shape == (1, 64, 64, 3)
|
|
expected_slice = np.array([0.4931, 0.5988, 0.4569, 0.5556, 0.6650, 0.5087, 0.5966, 0.5358, 0.5269])
|
|
|
|
assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2
|
|
|
|
def test_stable_diffusion_inpaint_image_tensor(self):
|
|
device = "cpu" # ensure determinism for the device-dependent torch.Generator
|
|
components = self.get_dummy_components()
|
|
sd_pipe = StableDiffusionInpaintPipeline(**components)
|
|
sd_pipe = sd_pipe.to(device)
|
|
sd_pipe.set_progress_bar_config(disable=None)
|
|
|
|
inputs = self.get_dummy_inputs(device)
|
|
output = sd_pipe(**inputs)
|
|
out_pil = output.images
|
|
|
|
inputs = self.get_dummy_inputs(device)
|
|
inputs["image"] = torch.tensor(np.array(inputs["image"]) / 127.5 - 1).permute(2, 0, 1).unsqueeze(0)
|
|
inputs["mask_image"] = torch.tensor(np.array(inputs["mask_image"]) / 255).permute(2, 0, 1)[:1].unsqueeze(0)
|
|
output = sd_pipe(**inputs)
|
|
out_tensor = output.images
|
|
|
|
assert out_pil.shape == (1, 64, 64, 3)
|
|
assert np.abs(out_pil.flatten() - out_tensor.flatten()).max() < 5e-2
|
|
|
|
def test_inference_batch_single_identical(self):
|
|
super().test_inference_batch_single_identical(expected_max_diff=3e-3)
|
|
|
|
def test_stable_diffusion_inpaint_strength_zero_test(self):
|
|
device = "cpu" # ensure determinism for the device-dependent torch.Generator
|
|
components = self.get_dummy_components()
|
|
sd_pipe = StableDiffusionInpaintPipeline(**components)
|
|
sd_pipe = sd_pipe.to(device)
|
|
sd_pipe.set_progress_bar_config(disable=None)
|
|
|
|
inputs = self.get_dummy_inputs(device)
|
|
|
|
# check that the pipeline raises value error when num_inference_steps is < 1
|
|
inputs["strength"] = 0.01
|
|
with self.assertRaises(ValueError):
|
|
sd_pipe(**inputs).images
|
|
|
|
def test_stable_diffusion_inpaint_mask_latents(self):
|
|
device = "cpu"
|
|
components = self.get_dummy_components()
|
|
sd_pipe = self.pipeline_class(**components).to(device)
|
|
sd_pipe.set_progress_bar_config(disable=None)
|
|
|
|
# normal mask + normal image
|
|
## `image`: pil, `mask_image``: pil, `masked_image_latents``: None
|
|
inputs = self.get_dummy_inputs(device)
|
|
inputs["strength"] = 0.9
|
|
out_0 = sd_pipe(**inputs).images
|
|
|
|
# image latents + mask latents
|
|
inputs = self.get_dummy_inputs(device)
|
|
image = sd_pipe.image_processor.preprocess(inputs["image"]).to(sd_pipe.device)
|
|
mask = sd_pipe.mask_processor.preprocess(inputs["mask_image"]).to(sd_pipe.device)
|
|
masked_image = image * (mask < 0.5)
|
|
|
|
generator = torch.Generator(device=device).manual_seed(0)
|
|
image_latents = (
|
|
sd_pipe.vae.encode(image).latent_dist.sample(generator=generator) * sd_pipe.vae.config.scaling_factor
|
|
)
|
|
torch.randn((1, 4, 32, 32), generator=generator)
|
|
mask_latents = (
|
|
sd_pipe.vae.encode(masked_image).latent_dist.sample(generator=generator)
|
|
* sd_pipe.vae.config.scaling_factor
|
|
)
|
|
inputs["image"] = image_latents
|
|
inputs["masked_image_latents"] = mask_latents
|
|
inputs["mask_image"] = mask
|
|
inputs["strength"] = 0.9
|
|
generator = torch.Generator(device=device).manual_seed(0)
|
|
torch.randn((1, 4, 32, 32), generator=generator)
|
|
inputs["generator"] = generator
|
|
out_1 = sd_pipe(**inputs).images
|
|
assert np.abs(out_0 - out_1).max() < 1e-2
|
|
|
|
def test_pipeline_interrupt(self):
|
|
components = self.get_dummy_components()
|
|
sd_pipe = StableDiffusionInpaintPipeline(**components)
|
|
sd_pipe = sd_pipe.to(torch_device)
|
|
sd_pipe.set_progress_bar_config(disable=None)
|
|
|
|
inputs = self.get_dummy_inputs(torch_device)
|
|
|
|
prompt = "hey"
|
|
num_inference_steps = 3
|
|
|
|
# store intermediate latents from the generation process
|
|
class PipelineState:
|
|
def __init__(self):
|
|
self.state = []
|
|
|
|
def apply(self, pipe, i, t, callback_kwargs):
|
|
self.state.append(callback_kwargs["latents"])
|
|
return callback_kwargs
|
|
|
|
pipe_state = PipelineState()
|
|
sd_pipe(
|
|
prompt,
|
|
image=inputs["image"],
|
|
mask_image=inputs["mask_image"],
|
|
num_inference_steps=num_inference_steps,
|
|
output_type="np",
|
|
generator=torch.Generator("cpu").manual_seed(0),
|
|
callback_on_step_end=pipe_state.apply,
|
|
).images
|
|
|
|
# interrupt generation at step index
|
|
interrupt_step_idx = 1
|
|
|
|
def callback_on_step_end(pipe, i, t, callback_kwargs):
|
|
if i == interrupt_step_idx:
|
|
pipe._interrupt = True
|
|
|
|
return callback_kwargs
|
|
|
|
output_interrupted = sd_pipe(
|
|
prompt,
|
|
image=inputs["image"],
|
|
mask_image=inputs["mask_image"],
|
|
num_inference_steps=num_inference_steps,
|
|
output_type="latent",
|
|
generator=torch.Generator("cpu").manual_seed(0),
|
|
callback_on_step_end=callback_on_step_end,
|
|
).images
|
|
|
|
# fetch intermediate latents at the interrupted step
|
|
# from the completed generation process
|
|
intermediate_latent = pipe_state.state[interrupt_step_idx]
|
|
|
|
# compare the intermediate latent to the output of the interrupted process
|
|
# they should be the same
|
|
assert torch.allclose(intermediate_latent, output_interrupted, atol=1e-4)
|
|
|
|
def test_ip_adapter(self, from_simple=False, expected_pipe_slice=None):
|
|
if not from_simple:
|
|
expected_pipe_slice = None
|
|
if torch_device == "cpu":
|
|
expected_pipe_slice = np.array(
|
|
[0.4390, 0.5452, 0.3772, 0.5448, 0.6031, 0.4480, 0.5194, 0.4687, 0.4640]
|
|
)
|
|
return super().test_ip_adapter(expected_pipe_slice=expected_pipe_slice)
|
|
|
|
def test_encode_prompt_works_in_isolation(self):
|
|
extra_required_param_value_dict = {
|
|
"device": torch.device(torch_device).type,
|
|
"do_classifier_free_guidance": self.get_dummy_inputs(device=torch_device).get("guidance_scale", 1.0) > 1.0,
|
|
}
|
|
return super().test_encode_prompt_works_in_isolation(extra_required_param_value_dict, atol=1e-3, rtol=1e-3)
|
|
|
|
|
|
class StableDiffusionSimpleInpaintPipelineFastTests(StableDiffusionInpaintPipelineFastTests):
|
|
pipeline_class = StableDiffusionInpaintPipeline
|
|
params = TEXT_GUIDED_IMAGE_INPAINTING_PARAMS
|
|
batch_params = TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS
|
|
image_params = frozenset([])
|
|
# TO-DO: update image_params once pipeline is refactored with VaeImageProcessor.preprocess
|
|
|
|
def get_dummy_components(self, time_cond_proj_dim=None):
|
|
torch.manual_seed(0)
|
|
unet = UNet2DConditionModel(
|
|
block_out_channels=(32, 64),
|
|
layers_per_block=2,
|
|
time_cond_proj_dim=time_cond_proj_dim,
|
|
sample_size=32,
|
|
in_channels=4,
|
|
out_channels=4,
|
|
down_block_types=("DownBlock2D", "CrossAttnDownBlock2D"),
|
|
up_block_types=("CrossAttnUpBlock2D", "UpBlock2D"),
|
|
cross_attention_dim=32,
|
|
)
|
|
scheduler = PNDMScheduler(skip_prk_steps=True)
|
|
torch.manual_seed(0)
|
|
vae = AutoencoderKL(
|
|
block_out_channels=[32, 64],
|
|
in_channels=3,
|
|
out_channels=3,
|
|
down_block_types=["DownEncoderBlock2D", "DownEncoderBlock2D"],
|
|
up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D"],
|
|
latent_channels=4,
|
|
)
|
|
torch.manual_seed(0)
|
|
text_encoder_config = CLIPTextConfig(
|
|
bos_token_id=0,
|
|
eos_token_id=2,
|
|
hidden_size=32,
|
|
intermediate_size=37,
|
|
layer_norm_eps=1e-05,
|
|
num_attention_heads=4,
|
|
num_hidden_layers=5,
|
|
pad_token_id=1,
|
|
vocab_size=1000,
|
|
)
|
|
text_encoder = CLIPTextModel(text_encoder_config)
|
|
tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip")
|
|
|
|
components = {
|
|
"unet": unet,
|
|
"scheduler": scheduler,
|
|
"vae": vae,
|
|
"text_encoder": text_encoder,
|
|
"tokenizer": tokenizer,
|
|
"safety_checker": None,
|
|
"feature_extractor": None,
|
|
"image_encoder": None,
|
|
}
|
|
return components
|
|
|
|
def get_dummy_inputs_2images(self, device, seed=0, img_res=64):
|
|
# Get random floats in [0, 1] as image with spatial size (img_res, img_res)
|
|
image1 = floats_tensor((1, 3, img_res, img_res), rng=random.Random(seed)).to(device)
|
|
image2 = floats_tensor((1, 3, img_res, img_res), rng=random.Random(seed + 22)).to(device)
|
|
# Convert images to [-1, 1]
|
|
init_image1 = 2.0 * image1 - 1.0
|
|
init_image2 = 2.0 * image2 - 1.0
|
|
|
|
# empty mask
|
|
mask_image = torch.zeros((1, 1, img_res, img_res), device=device)
|
|
|
|
if str(device).startswith("mps"):
|
|
generator1 = torch.manual_seed(seed)
|
|
generator2 = torch.manual_seed(seed)
|
|
else:
|
|
generator1 = torch.Generator(device=device).manual_seed(seed)
|
|
generator2 = torch.Generator(device=device).manual_seed(seed)
|
|
|
|
inputs = {
|
|
"prompt": ["A painting of a squirrel eating a burger"] * 2,
|
|
"image": [init_image1, init_image2],
|
|
"mask_image": [mask_image] * 2,
|
|
"generator": [generator1, generator2],
|
|
"num_inference_steps": 2,
|
|
"guidance_scale": 6.0,
|
|
"output_type": "np",
|
|
}
|
|
return inputs
|
|
|
|
def test_ip_adapter(self):
|
|
expected_pipe_slice = None
|
|
if torch_device == "cpu":
|
|
expected_pipe_slice = np.array([0.6345, 0.5395, 0.5611, 0.5403, 0.5830, 0.5855, 0.5193, 0.5443, 0.5211])
|
|
return super().test_ip_adapter(from_simple=True, expected_pipe_slice=expected_pipe_slice)
|
|
|
|
def test_stable_diffusion_inpaint(self):
|
|
device = "cpu" # ensure determinism for the device-dependent torch.Generator
|
|
components = self.get_dummy_components()
|
|
sd_pipe = StableDiffusionInpaintPipeline(**components)
|
|
sd_pipe = sd_pipe.to(device)
|
|
sd_pipe.set_progress_bar_config(disable=None)
|
|
|
|
inputs = self.get_dummy_inputs(device)
|
|
image = sd_pipe(**inputs).images
|
|
image_slice = image[0, -3:, -3:, -1]
|
|
|
|
assert image.shape == (1, 64, 64, 3)
|
|
expected_slice = np.array([0.6584, 0.5424, 0.5649, 0.5449, 0.5897, 0.6111, 0.5404, 0.5463, 0.5214])
|
|
|
|
assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2
|
|
|
|
def test_stable_diffusion_inpaint_lcm(self):
|
|
device = "cpu" # ensure determinism for the device-dependent torch.Generator
|
|
components = self.get_dummy_components(time_cond_proj_dim=256)
|
|
sd_pipe = StableDiffusionInpaintPipeline(**components)
|
|
sd_pipe.scheduler = LCMScheduler.from_config(sd_pipe.scheduler.config)
|
|
sd_pipe = sd_pipe.to(device)
|
|
sd_pipe.set_progress_bar_config(disable=None)
|
|
|
|
inputs = self.get_dummy_inputs(device)
|
|
image = sd_pipe(**inputs).images
|
|
image_slice = image[0, -3:, -3:, -1]
|
|
|
|
assert image.shape == (1, 64, 64, 3)
|
|
expected_slice = np.array([0.6240, 0.5355, 0.5649, 0.5378, 0.5374, 0.6242, 0.5132, 0.5347, 0.5396])
|
|
|
|
assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2
|
|
|
|
def test_stable_diffusion_inpaint_lcm_custom_timesteps(self):
|
|
device = "cpu" # ensure determinism for the device-dependent torch.Generator
|
|
components = self.get_dummy_components(time_cond_proj_dim=256)
|
|
sd_pipe = StableDiffusionInpaintPipeline(**components)
|
|
sd_pipe.scheduler = LCMScheduler.from_config(sd_pipe.scheduler.config)
|
|
sd_pipe = sd_pipe.to(device)
|
|
sd_pipe.set_progress_bar_config(disable=None)
|
|
|
|
inputs = self.get_dummy_inputs(device)
|
|
del inputs["num_inference_steps"]
|
|
inputs["timesteps"] = [999, 499]
|
|
image = sd_pipe(**inputs).images
|
|
image_slice = image[0, -3:, -3:, -1]
|
|
|
|
assert image.shape == (1, 64, 64, 3)
|
|
expected_slice = np.array([0.6240, 0.5355, 0.5649, 0.5378, 0.5374, 0.6242, 0.5132, 0.5347, 0.5396])
|
|
|
|
assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2
|
|
|
|
def test_stable_diffusion_inpaint_2_images(self):
|
|
device = "cpu" # ensure determinism for the device-dependent torch.Generator
|
|
components = self.get_dummy_components()
|
|
sd_pipe = self.pipeline_class(**components)
|
|
sd_pipe = sd_pipe.to(device)
|
|
sd_pipe.set_progress_bar_config(disable=None)
|
|
|
|
# test to confirm if we pass two same image, we will get same output
|
|
inputs = self.get_dummy_inputs(device)
|
|
gen1 = torch.Generator(device=device).manual_seed(0)
|
|
gen2 = torch.Generator(device=device).manual_seed(0)
|
|
for name in ["prompt", "image", "mask_image"]:
|
|
inputs[name] = [inputs[name]] * 2
|
|
inputs["generator"] = [gen1, gen2]
|
|
images = sd_pipe(**inputs).images
|
|
|
|
assert images.shape == (2, 64, 64, 3)
|
|
|
|
image_slice1 = images[0, -3:, -3:, -1]
|
|
image_slice2 = images[1, -3:, -3:, -1]
|
|
assert np.abs(image_slice1.flatten() - image_slice2.flatten()).max() < 1e-4
|
|
|
|
# test to confirm that if we pass two different images, we will get different output
|
|
inputs = self.get_dummy_inputs_2images(device)
|
|
images = sd_pipe(**inputs).images
|
|
assert images.shape == (2, 64, 64, 3)
|
|
|
|
image_slice1 = images[0, -3:, -3:, -1]
|
|
image_slice2 = images[1, -3:, -3:, -1]
|
|
assert np.abs(image_slice1.flatten() - image_slice2.flatten()).max() > 1e-2
|
|
|
|
def test_stable_diffusion_inpaint_euler(self):
|
|
device = "cpu" # ensure determinism for the device-dependent torch.Generator
|
|
components = self.get_dummy_components(time_cond_proj_dim=256)
|
|
sd_pipe = StableDiffusionInpaintPipeline(**components)
|
|
sd_pipe.scheduler = EulerAncestralDiscreteScheduler.from_config(sd_pipe.scheduler.config)
|
|
sd_pipe = sd_pipe.to(device)
|
|
sd_pipe.set_progress_bar_config(disable=None)
|
|
|
|
inputs = self.get_dummy_inputs(device, output_pil=False)
|
|
half_dim = inputs["image"].shape[2] // 2
|
|
inputs["mask_image"][0, 0, :half_dim, :half_dim] = 0
|
|
|
|
inputs["num_inference_steps"] = 4
|
|
image = sd_pipe(**inputs).images
|
|
image_slice = image[0, -3:, -3:, -1]
|
|
|
|
assert image.shape == (1, 64, 64, 3)
|
|
|
|
expected_slice = np.array(
|
|
[[0.6387283, 0.5564158, 0.58631873, 0.5539942, 0.5494673, 0.6461868, 0.5251618, 0.5497595, 0.5508756]]
|
|
)
|
|
assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-4
|
|
|
|
|
|
@slow
|
|
@require_torch_accelerator
|
|
class StableDiffusionInpaintPipelineSlowTests(unittest.TestCase):
|
|
def setUp(self):
|
|
super().setUp()
|
|
|
|
def tearDown(self):
|
|
super().tearDown()
|
|
gc.collect()
|
|
backend_empty_cache(torch_device)
|
|
|
|
def get_inputs(self, device, generator_device="cpu", dtype=torch.float32, seed=0):
|
|
generator = torch.Generator(device=generator_device).manual_seed(seed)
|
|
init_image = load_image(
|
|
"https://huggingface.co/datasets/diffusers/test-arrays/resolve/main"
|
|
"/stable_diffusion_inpaint/input_bench_image.png"
|
|
)
|
|
mask_image = load_image(
|
|
"https://huggingface.co/datasets/diffusers/test-arrays/resolve/main"
|
|
"/stable_diffusion_inpaint/input_bench_mask.png"
|
|
)
|
|
inputs = {
|
|
"prompt": "Face of a yellow cat, high resolution, sitting on a park bench",
|
|
"image": init_image,
|
|
"mask_image": mask_image,
|
|
"generator": generator,
|
|
"num_inference_steps": 3,
|
|
"guidance_scale": 7.5,
|
|
"output_type": "np",
|
|
}
|
|
return inputs
|
|
|
|
def test_stable_diffusion_inpaint_ddim(self):
|
|
pipe = StableDiffusionInpaintPipeline.from_pretrained(
|
|
"botp/stable-diffusion-v1-5-inpainting", safety_checker=None
|
|
)
|
|
pipe.to(torch_device)
|
|
pipe.set_progress_bar_config(disable=None)
|
|
pipe.enable_attention_slicing()
|
|
|
|
inputs = self.get_inputs(torch_device)
|
|
image = pipe(**inputs).images
|
|
image_slice = image[0, 253:256, 253:256, -1].flatten()
|
|
|
|
assert image.shape == (1, 512, 512, 3)
|
|
expected_slice = np.array([0.0427, 0.0460, 0.0483, 0.0460, 0.0584, 0.0521, 0.1549, 0.1695, 0.1794])
|
|
|
|
assert np.abs(expected_slice - image_slice).max() < 6e-4
|
|
|
|
def test_stable_diffusion_inpaint_fp16(self):
|
|
pipe = StableDiffusionInpaintPipeline.from_pretrained(
|
|
"botp/stable-diffusion-v1-5-inpainting", torch_dtype=torch.float16, safety_checker=None
|
|
)
|
|
pipe.unet.set_default_attn_processor()
|
|
pipe.to(torch_device)
|
|
pipe.set_progress_bar_config(disable=None)
|
|
pipe.enable_attention_slicing()
|
|
|
|
inputs = self.get_inputs(torch_device, dtype=torch.float16)
|
|
image = pipe(**inputs).images
|
|
image_slice = image[0, 253:256, 253:256, -1].flatten()
|
|
|
|
assert image.shape == (1, 512, 512, 3)
|
|
expected_slice = np.array([0.1509, 0.1245, 0.1672, 0.1655, 0.1519, 0.1226, 0.1462, 0.1567, 0.2451])
|
|
assert np.abs(expected_slice - image_slice).max() < 1e-1
|
|
|
|
def test_stable_diffusion_inpaint_pndm(self):
|
|
pipe = StableDiffusionInpaintPipeline.from_pretrained(
|
|
"botp/stable-diffusion-v1-5-inpainting", safety_checker=None
|
|
)
|
|
pipe.scheduler = PNDMScheduler.from_config(pipe.scheduler.config)
|
|
pipe.to(torch_device)
|
|
pipe.set_progress_bar_config(disable=None)
|
|
pipe.enable_attention_slicing()
|
|
|
|
inputs = self.get_inputs(torch_device)
|
|
image = pipe(**inputs).images
|
|
image_slice = image[0, 253:256, 253:256, -1].flatten()
|
|
|
|
assert image.shape == (1, 512, 512, 3)
|
|
expected_slice = np.array([0.0425, 0.0273, 0.0344, 0.1694, 0.1727, 0.1812, 0.3256, 0.3311, 0.3272])
|
|
|
|
assert np.abs(expected_slice - image_slice).max() < 5e-3
|
|
|
|
def test_stable_diffusion_inpaint_k_lms(self):
|
|
pipe = StableDiffusionInpaintPipeline.from_pretrained(
|
|
"botp/stable-diffusion-v1-5-inpainting", safety_checker=None
|
|
)
|
|
pipe.scheduler = LMSDiscreteScheduler.from_config(pipe.scheduler.config)
|
|
pipe.to(torch_device)
|
|
pipe.set_progress_bar_config(disable=None)
|
|
pipe.enable_attention_slicing()
|
|
|
|
inputs = self.get_inputs(torch_device)
|
|
image = pipe(**inputs).images
|
|
image_slice = image[0, 253:256, 253:256, -1].flatten()
|
|
|
|
assert image.shape == (1, 512, 512, 3)
|
|
expected_slice = np.array([0.9314, 0.7575, 0.9432, 0.8885, 0.9028, 0.7298, 0.9811, 0.9667, 0.7633])
|
|
|
|
assert np.abs(expected_slice - image_slice).max() < 6e-3
|
|
|
|
def test_stable_diffusion_inpaint_with_sequential_cpu_offloading(self):
|
|
backend_empty_cache(torch_device)
|
|
backend_reset_max_memory_allocated(torch_device)
|
|
backend_reset_peak_memory_stats(torch_device)
|
|
|
|
pipe = StableDiffusionInpaintPipeline.from_pretrained(
|
|
"botp/stable-diffusion-v1-5-inpainting", safety_checker=None, torch_dtype=torch.float16
|
|
)
|
|
pipe.set_progress_bar_config(disable=None)
|
|
pipe.enable_attention_slicing(1)
|
|
pipe.enable_sequential_cpu_offload(device=torch_device)
|
|
|
|
inputs = self.get_inputs(torch_device, dtype=torch.float16)
|
|
_ = pipe(**inputs)
|
|
|
|
mem_bytes = backend_max_memory_allocated(torch_device)
|
|
# make sure that less than 2.2 GB is allocated
|
|
assert mem_bytes < 2.2 * 10**9
|
|
|
|
def test_stable_diffusion_inpaint_pil_input_resolution_test(self):
|
|
pipe = StableDiffusionInpaintPipeline.from_pretrained(
|
|
"botp/stable-diffusion-v1-5-inpainting", safety_checker=None
|
|
)
|
|
pipe.scheduler = LMSDiscreteScheduler.from_config(pipe.scheduler.config)
|
|
pipe.to(torch_device)
|
|
pipe.set_progress_bar_config(disable=None)
|
|
pipe.enable_attention_slicing()
|
|
|
|
inputs = self.get_inputs(torch_device)
|
|
# change input image to a random size (one that would cause a tensor mismatch error)
|
|
inputs["image"] = inputs["image"].resize((127, 127))
|
|
inputs["mask_image"] = inputs["mask_image"].resize((127, 127))
|
|
inputs["height"] = 128
|
|
inputs["width"] = 128
|
|
image = pipe(**inputs).images
|
|
# verify that the returned image has the same height and width as the input height and width
|
|
assert image.shape == (1, inputs["height"], inputs["width"], 3)
|
|
|
|
def test_stable_diffusion_inpaint_strength_test(self):
|
|
pipe = StableDiffusionInpaintPipeline.from_pretrained(
|
|
"botp/stable-diffusion-v1-5-inpainting", safety_checker=None
|
|
)
|
|
pipe.scheduler = LMSDiscreteScheduler.from_config(pipe.scheduler.config)
|
|
pipe.unet.set_default_attn_processor()
|
|
pipe.to(torch_device)
|
|
pipe.set_progress_bar_config(disable=None)
|
|
pipe.enable_attention_slicing()
|
|
|
|
inputs = self.get_inputs(torch_device)
|
|
# change input strength
|
|
inputs["strength"] = 0.75
|
|
image = pipe(**inputs).images
|
|
# verify that the returned image has the same height and width as the input height and width
|
|
assert image.shape == (1, 512, 512, 3)
|
|
|
|
image_slice = image[0, 253:256, 253:256, -1].flatten()
|
|
expected_slice = np.array([0.2728, 0.2803, 0.2665, 0.2511, 0.2774, 0.2586, 0.2391, 0.2392, 0.2582])
|
|
assert np.abs(expected_slice - image_slice).max() < 1e-3
|
|
|
|
def test_stable_diffusion_simple_inpaint_ddim(self):
|
|
pipe = StableDiffusionInpaintPipeline.from_pretrained(
|
|
"stable-diffusion-v1-5/stable-diffusion-v1-5", safety_checker=None
|
|
)
|
|
pipe.unet.set_default_attn_processor()
|
|
pipe.to(torch_device)
|
|
pipe.set_progress_bar_config(disable=None)
|
|
pipe.enable_attention_slicing()
|
|
|
|
inputs = self.get_inputs(torch_device)
|
|
image = pipe(**inputs).images
|
|
|
|
image_slice = image[0, 253:256, 253:256, -1].flatten()
|
|
|
|
assert image.shape == (1, 512, 512, 3)
|
|
expected_slice = np.array([0.3757, 0.3875, 0.4445, 0.4353, 0.3780, 0.4513, 0.3965, 0.3984, 0.4362])
|
|
assert np.abs(expected_slice - image_slice).max() < 1e-3
|
|
|
|
|
|
@slow
|
|
@require_torch_accelerator
|
|
class StableDiffusionInpaintPipelineAsymmetricAutoencoderKLSlowTests(unittest.TestCase):
|
|
def setUp(self):
|
|
super().setUp()
|
|
|
|
def tearDown(self):
|
|
super().tearDown()
|
|
gc.collect()
|
|
backend_empty_cache(torch_device)
|
|
|
|
def get_inputs(self, device, generator_device="cpu", dtype=torch.float32, seed=0):
|
|
generator = torch.Generator(device=generator_device).manual_seed(seed)
|
|
init_image = load_image(
|
|
"https://huggingface.co/datasets/diffusers/test-arrays/resolve/main"
|
|
"/stable_diffusion_inpaint/input_bench_image.png"
|
|
)
|
|
mask_image = load_image(
|
|
"https://huggingface.co/datasets/diffusers/test-arrays/resolve/main"
|
|
"/stable_diffusion_inpaint/input_bench_mask.png"
|
|
)
|
|
inputs = {
|
|
"prompt": "Face of a yellow cat, high resolution, sitting on a park bench",
|
|
"image": init_image,
|
|
"mask_image": mask_image,
|
|
"generator": generator,
|
|
"num_inference_steps": 3,
|
|
"guidance_scale": 7.5,
|
|
"output_type": "np",
|
|
}
|
|
return inputs
|
|
|
|
def test_stable_diffusion_inpaint_ddim(self):
|
|
vae = AsymmetricAutoencoderKL.from_pretrained("cross-attention/asymmetric-autoencoder-kl-x-1-5")
|
|
pipe = StableDiffusionInpaintPipeline.from_pretrained(
|
|
"botp/stable-diffusion-v1-5-inpainting", safety_checker=None
|
|
)
|
|
pipe.vae = vae
|
|
pipe.unet.set_default_attn_processor()
|
|
pipe.to(torch_device)
|
|
pipe.set_progress_bar_config(disable=None)
|
|
pipe.enable_attention_slicing()
|
|
|
|
inputs = self.get_inputs(torch_device)
|
|
image = pipe(**inputs).images
|
|
image_slice = image[0, 253:256, 253:256, -1].flatten()
|
|
|
|
assert image.shape == (1, 512, 512, 3)
|
|
expected_slice = np.array([0.0522, 0.0604, 0.0596, 0.0449, 0.0493, 0.0427, 0.1186, 0.1289, 0.1442])
|
|
|
|
assert np.abs(expected_slice - image_slice).max() < 1e-3
|
|
|
|
def test_stable_diffusion_inpaint_fp16(self):
|
|
vae = AsymmetricAutoencoderKL.from_pretrained(
|
|
"cross-attention/asymmetric-autoencoder-kl-x-1-5", torch_dtype=torch.float16
|
|
)
|
|
pipe = StableDiffusionInpaintPipeline.from_pretrained(
|
|
"botp/stable-diffusion-v1-5-inpainting", torch_dtype=torch.float16, safety_checker=None
|
|
)
|
|
pipe.unet.set_default_attn_processor()
|
|
pipe.vae = vae
|
|
pipe.to(torch_device)
|
|
pipe.set_progress_bar_config(disable=None)
|
|
pipe.enable_attention_slicing()
|
|
|
|
inputs = self.get_inputs(torch_device, dtype=torch.float16)
|
|
image = pipe(**inputs).images
|
|
image_slice = image[0, 253:256, 253:256, -1].flatten()
|
|
|
|
assert image.shape == (1, 512, 512, 3)
|
|
expected_slices = Expectations(
|
|
{
|
|
("xpu", 3): np.array(
|
|
[
|
|
0.2063,
|
|
0.1731,
|
|
0.1553,
|
|
0.1741,
|
|
0.1772,
|
|
0.1077,
|
|
0.2109,
|
|
0.2407,
|
|
0.1243,
|
|
]
|
|
),
|
|
("cuda", 7): np.array(
|
|
[
|
|
0.1343,
|
|
0.1406,
|
|
0.1440,
|
|
0.1504,
|
|
0.1729,
|
|
0.0989,
|
|
0.1807,
|
|
0.2822,
|
|
0.1179,
|
|
]
|
|
),
|
|
}
|
|
)
|
|
expected_slice = expected_slices.get_expectation()
|
|
|
|
assert np.abs(expected_slice - image_slice).max() < 5e-2
|
|
|
|
def test_stable_diffusion_inpaint_pndm(self):
|
|
vae = AsymmetricAutoencoderKL.from_pretrained("cross-attention/asymmetric-autoencoder-kl-x-1-5")
|
|
pipe = StableDiffusionInpaintPipeline.from_pretrained(
|
|
"botp/stable-diffusion-v1-5-inpainting", safety_checker=None
|
|
)
|
|
pipe.unet.set_default_attn_processor()
|
|
pipe.vae = vae
|
|
pipe.scheduler = PNDMScheduler.from_config(pipe.scheduler.config)
|
|
pipe.to(torch_device)
|
|
pipe.set_progress_bar_config(disable=None)
|
|
pipe.enable_attention_slicing()
|
|
|
|
inputs = self.get_inputs(torch_device)
|
|
image = pipe(**inputs).images
|
|
image_slice = image[0, 253:256, 253:256, -1].flatten()
|
|
|
|
assert image.shape == (1, 512, 512, 3)
|
|
expected_slice = np.array([0.0966, 0.1083, 0.1148, 0.1422, 0.1318, 0.1197, 0.3702, 0.3537, 0.3288])
|
|
|
|
assert np.abs(expected_slice - image_slice).max() < 5e-3
|
|
|
|
def test_stable_diffusion_inpaint_k_lms(self):
|
|
vae = AsymmetricAutoencoderKL.from_pretrained("cross-attention/asymmetric-autoencoder-kl-x-1-5")
|
|
pipe = StableDiffusionInpaintPipeline.from_pretrained(
|
|
"botp/stable-diffusion-v1-5-inpainting", safety_checker=None
|
|
)
|
|
pipe.unet.set_default_attn_processor()
|
|
pipe.vae = vae
|
|
pipe.scheduler = LMSDiscreteScheduler.from_config(pipe.scheduler.config)
|
|
pipe.to(torch_device)
|
|
pipe.set_progress_bar_config(disable=None)
|
|
pipe.enable_attention_slicing()
|
|
|
|
inputs = self.get_inputs(torch_device)
|
|
image = pipe(**inputs).images
|
|
image_slice = image[0, 253:256, 253:256, -1].flatten()
|
|
assert image.shape == (1, 512, 512, 3)
|
|
expected_slice = np.array([0.8931, 0.8683, 0.8965, 0.8501, 0.8592, 0.9118, 0.8734, 0.7463, 0.8990])
|
|
assert np.abs(expected_slice - image_slice).max() < 6e-3
|
|
|
|
def test_stable_diffusion_inpaint_with_sequential_cpu_offloading(self):
|
|
backend_empty_cache(torch_device)
|
|
backend_reset_max_memory_allocated(torch_device)
|
|
backend_reset_peak_memory_stats(torch_device)
|
|
|
|
vae = AsymmetricAutoencoderKL.from_pretrained(
|
|
"cross-attention/asymmetric-autoencoder-kl-x-1-5", torch_dtype=torch.float16
|
|
)
|
|
pipe = StableDiffusionInpaintPipeline.from_pretrained(
|
|
"botp/stable-diffusion-v1-5-inpainting", safety_checker=None, torch_dtype=torch.float16
|
|
)
|
|
pipe.vae = vae
|
|
pipe.set_progress_bar_config(disable=None)
|
|
pipe.enable_attention_slicing(1)
|
|
pipe.enable_sequential_cpu_offload(device=torch_device)
|
|
|
|
inputs = self.get_inputs(torch_device, dtype=torch.float16)
|
|
_ = pipe(**inputs)
|
|
|
|
mem_bytes = backend_max_memory_allocated(torch_device)
|
|
# make sure that less than 2.45 GB is allocated
|
|
assert mem_bytes < 2.45 * 10**9
|
|
|
|
def test_stable_diffusion_inpaint_pil_input_resolution_test(self):
|
|
vae = AsymmetricAutoencoderKL.from_pretrained(
|
|
"cross-attention/asymmetric-autoencoder-kl-x-1-5",
|
|
)
|
|
pipe = StableDiffusionInpaintPipeline.from_pretrained(
|
|
"botp/stable-diffusion-v1-5-inpainting", safety_checker=None
|
|
)
|
|
pipe.vae = vae
|
|
pipe.scheduler = LMSDiscreteScheduler.from_config(pipe.scheduler.config)
|
|
pipe.to(torch_device)
|
|
pipe.set_progress_bar_config(disable=None)
|
|
pipe.enable_attention_slicing()
|
|
|
|
inputs = self.get_inputs(torch_device)
|
|
# change input image to a random size (one that would cause a tensor mismatch error)
|
|
inputs["image"] = inputs["image"].resize((127, 127))
|
|
inputs["mask_image"] = inputs["mask_image"].resize((127, 127))
|
|
inputs["height"] = 128
|
|
inputs["width"] = 128
|
|
image = pipe(**inputs).images
|
|
# verify that the returned image has the same height and width as the input height and width
|
|
assert image.shape == (1, inputs["height"], inputs["width"], 3)
|
|
|
|
def test_stable_diffusion_inpaint_strength_test(self):
|
|
vae = AsymmetricAutoencoderKL.from_pretrained("cross-attention/asymmetric-autoencoder-kl-x-1-5")
|
|
pipe = StableDiffusionInpaintPipeline.from_pretrained(
|
|
"botp/stable-diffusion-v1-5-inpainting", safety_checker=None
|
|
)
|
|
pipe.unet.set_default_attn_processor()
|
|
pipe.vae = vae
|
|
pipe.scheduler = LMSDiscreteScheduler.from_config(pipe.scheduler.config)
|
|
pipe.to(torch_device)
|
|
pipe.set_progress_bar_config(disable=None)
|
|
pipe.enable_attention_slicing()
|
|
|
|
inputs = self.get_inputs(torch_device)
|
|
# change input strength
|
|
inputs["strength"] = 0.75
|
|
image = pipe(**inputs).images
|
|
# verify that the returned image has the same height and width as the input height and width
|
|
assert image.shape == (1, 512, 512, 3)
|
|
|
|
image_slice = image[0, 253:256, 253:256, -1].flatten()
|
|
expected_slice = np.array([0.2458, 0.2576, 0.3124, 0.2679, 0.2669, 0.2796, 0.2872, 0.2975, 0.2661])
|
|
assert np.abs(expected_slice - image_slice).max() < 3e-3
|
|
|
|
def test_stable_diffusion_simple_inpaint_ddim(self):
|
|
vae = AsymmetricAutoencoderKL.from_pretrained("cross-attention/asymmetric-autoencoder-kl-x-1-5")
|
|
pipe = StableDiffusionInpaintPipeline.from_pretrained(
|
|
"stable-diffusion-v1-5/stable-diffusion-v1-5", safety_checker=None
|
|
)
|
|
pipe.vae = vae
|
|
pipe.unet.set_default_attn_processor()
|
|
pipe.to(torch_device)
|
|
pipe.set_progress_bar_config(disable=None)
|
|
pipe.enable_attention_slicing()
|
|
|
|
inputs = self.get_inputs(torch_device)
|
|
image = pipe(**inputs).images
|
|
|
|
image_slice = image[0, 253:256, 253:256, -1].flatten()
|
|
|
|
assert image.shape == (1, 512, 512, 3)
|
|
expected_slice = np.array([0.3296, 0.4041, 0.4097, 0.4145, 0.4342, 0.4152, 0.4927, 0.4931, 0.4430])
|
|
assert np.abs(expected_slice - image_slice).max() < 1e-3
|
|
|
|
def test_download_local(self):
|
|
vae = AsymmetricAutoencoderKL.from_pretrained(
|
|
"cross-attention/asymmetric-autoencoder-kl-x-1-5", torch_dtype=torch.float16
|
|
)
|
|
filename = hf_hub_download("botp/stable-diffusion-v1-5-inpainting", filename="sd-v1-5-inpainting.ckpt")
|
|
|
|
pipe = StableDiffusionInpaintPipeline.from_single_file(filename, torch_dtype=torch.float16)
|
|
pipe.vae = vae
|
|
pipe.scheduler = DDIMScheduler.from_config(pipe.scheduler.config)
|
|
pipe.to(torch_device)
|
|
|
|
inputs = self.get_inputs(torch_device)
|
|
inputs["num_inference_steps"] = 1
|
|
image_out = pipe(**inputs).images[0]
|
|
|
|
assert image_out.shape == (512, 512, 3)
|
|
|
|
|
|
@nightly
|
|
@require_torch_accelerator
|
|
class StableDiffusionInpaintPipelineNightlyTests(unittest.TestCase):
|
|
def setUp(self):
|
|
super().setUp()
|
|
gc.collect()
|
|
backend_empty_cache(torch_device)
|
|
|
|
def tearDown(self):
|
|
super().tearDown()
|
|
gc.collect()
|
|
backend_empty_cache(torch_device)
|
|
|
|
def get_inputs(self, device, generator_device="cpu", dtype=torch.float32, seed=0):
|
|
generator = torch.Generator(device=generator_device).manual_seed(seed)
|
|
init_image = load_image(
|
|
"https://huggingface.co/datasets/diffusers/test-arrays/resolve/main"
|
|
"/stable_diffusion_inpaint/input_bench_image.png"
|
|
)
|
|
mask_image = load_image(
|
|
"https://huggingface.co/datasets/diffusers/test-arrays/resolve/main"
|
|
"/stable_diffusion_inpaint/input_bench_mask.png"
|
|
)
|
|
inputs = {
|
|
"prompt": "Face of a yellow cat, high resolution, sitting on a park bench",
|
|
"image": init_image,
|
|
"mask_image": mask_image,
|
|
"generator": generator,
|
|
"num_inference_steps": 50,
|
|
"guidance_scale": 7.5,
|
|
"output_type": "np",
|
|
}
|
|
return inputs
|
|
|
|
def test_inpaint_ddim(self):
|
|
sd_pipe = StableDiffusionInpaintPipeline.from_pretrained("botp/stable-diffusion-v1-5-inpainting")
|
|
sd_pipe.to(torch_device)
|
|
sd_pipe.set_progress_bar_config(disable=None)
|
|
|
|
inputs = self.get_inputs(torch_device)
|
|
image = sd_pipe(**inputs).images[0]
|
|
|
|
expected_image = load_numpy(
|
|
"https://huggingface.co/datasets/diffusers/test-arrays/resolve/main"
|
|
"/stable_diffusion_inpaint/stable_diffusion_inpaint_ddim.npy"
|
|
)
|
|
max_diff = np.abs(expected_image - image).max()
|
|
assert max_diff < 1e-3
|
|
|
|
def test_inpaint_pndm(self):
|
|
sd_pipe = StableDiffusionInpaintPipeline.from_pretrained("botp/stable-diffusion-v1-5-inpainting")
|
|
sd_pipe.scheduler = PNDMScheduler.from_config(sd_pipe.scheduler.config)
|
|
sd_pipe.to(torch_device)
|
|
sd_pipe.set_progress_bar_config(disable=None)
|
|
|
|
inputs = self.get_inputs(torch_device)
|
|
image = sd_pipe(**inputs).images[0]
|
|
|
|
expected_image = load_numpy(
|
|
"https://huggingface.co/datasets/diffusers/test-arrays/resolve/main"
|
|
"/stable_diffusion_inpaint/stable_diffusion_inpaint_pndm.npy"
|
|
)
|
|
max_diff = np.abs(expected_image - image).max()
|
|
assert max_diff < 1e-3
|
|
|
|
def test_inpaint_lms(self):
|
|
sd_pipe = StableDiffusionInpaintPipeline.from_pretrained("botp/stable-diffusion-v1-5-inpainting")
|
|
sd_pipe.scheduler = LMSDiscreteScheduler.from_config(sd_pipe.scheduler.config)
|
|
sd_pipe.to(torch_device)
|
|
sd_pipe.set_progress_bar_config(disable=None)
|
|
|
|
inputs = self.get_inputs(torch_device)
|
|
image = sd_pipe(**inputs).images[0]
|
|
|
|
expected_image = load_numpy(
|
|
"https://huggingface.co/datasets/diffusers/test-arrays/resolve/main"
|
|
"/stable_diffusion_inpaint/stable_diffusion_inpaint_lms.npy"
|
|
)
|
|
max_diff = np.abs(expected_image - image).max()
|
|
assert max_diff < 1e-3
|
|
|
|
def test_inpaint_dpm(self):
|
|
sd_pipe = StableDiffusionInpaintPipeline.from_pretrained("botp/stable-diffusion-v1-5-inpainting")
|
|
sd_pipe.scheduler = DPMSolverMultistepScheduler.from_config(sd_pipe.scheduler.config)
|
|
sd_pipe.to(torch_device)
|
|
sd_pipe.set_progress_bar_config(disable=None)
|
|
|
|
inputs = self.get_inputs(torch_device)
|
|
inputs["num_inference_steps"] = 30
|
|
image = sd_pipe(**inputs).images[0]
|
|
|
|
expected_image = load_numpy(
|
|
"https://huggingface.co/datasets/diffusers/test-arrays/resolve/main"
|
|
"/stable_diffusion_inpaint/stable_diffusion_inpaint_dpm_multi.npy"
|
|
)
|
|
max_diff = np.abs(expected_image - image).max()
|
|
assert max_diff < 1e-3
|