mirror of
https://github.com/huggingface/diffusers.git
synced 2026-01-27 17:22:53 +03:00
* update
* update
* update
* update
* update
* merge main
* Revert "merge main"
This reverts commit 65efbcead5.
219 lines
7.2 KiB
Python
219 lines
7.2 KiB
Python
# coding=utf-8
|
|
# Copyright 2025 HuggingFace Inc.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
|
|
import gc
|
|
import unittest
|
|
|
|
import numpy as np
|
|
import torch
|
|
from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer
|
|
|
|
from diffusers import AutoencoderKL, DDIMScheduler, LDMTextToImagePipeline, UNet2DConditionModel
|
|
|
|
from ...testing_utils import (
|
|
backend_empty_cache,
|
|
enable_full_determinism,
|
|
load_numpy,
|
|
nightly,
|
|
require_torch_accelerator,
|
|
torch_device,
|
|
)
|
|
from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_PARAMS
|
|
from ..test_pipelines_common import PipelineTesterMixin
|
|
|
|
|
|
enable_full_determinism()
|
|
|
|
|
|
class LDMTextToImagePipelineFastTests(PipelineTesterMixin, unittest.TestCase):
|
|
pipeline_class = LDMTextToImagePipeline
|
|
params = TEXT_TO_IMAGE_PARAMS - {
|
|
"negative_prompt",
|
|
"negative_prompt_embeds",
|
|
"cross_attention_kwargs",
|
|
"prompt_embeds",
|
|
}
|
|
required_optional_params = PipelineTesterMixin.required_optional_params - {
|
|
"num_images_per_prompt",
|
|
"callback",
|
|
"callback_steps",
|
|
}
|
|
batch_params = TEXT_TO_IMAGE_BATCH_PARAMS
|
|
|
|
def get_dummy_components(self):
|
|
torch.manual_seed(0)
|
|
unet = UNet2DConditionModel(
|
|
block_out_channels=(32, 64),
|
|
layers_per_block=2,
|
|
sample_size=32,
|
|
in_channels=4,
|
|
out_channels=4,
|
|
down_block_types=("DownBlock2D", "CrossAttnDownBlock2D"),
|
|
up_block_types=("CrossAttnUpBlock2D", "UpBlock2D"),
|
|
cross_attention_dim=32,
|
|
)
|
|
scheduler = DDIMScheduler(
|
|
beta_start=0.00085,
|
|
beta_end=0.012,
|
|
beta_schedule="scaled_linear",
|
|
clip_sample=False,
|
|
set_alpha_to_one=False,
|
|
)
|
|
torch.manual_seed(0)
|
|
vae = AutoencoderKL(
|
|
block_out_channels=(32, 64),
|
|
in_channels=3,
|
|
out_channels=3,
|
|
down_block_types=("DownEncoderBlock2D", "DownEncoderBlock2D"),
|
|
up_block_types=("UpDecoderBlock2D", "UpDecoderBlock2D"),
|
|
latent_channels=4,
|
|
)
|
|
torch.manual_seed(0)
|
|
text_encoder_config = CLIPTextConfig(
|
|
bos_token_id=0,
|
|
eos_token_id=2,
|
|
hidden_size=32,
|
|
intermediate_size=37,
|
|
layer_norm_eps=1e-05,
|
|
num_attention_heads=4,
|
|
num_hidden_layers=5,
|
|
pad_token_id=1,
|
|
vocab_size=1000,
|
|
)
|
|
text_encoder = CLIPTextModel(text_encoder_config)
|
|
tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip")
|
|
|
|
components = {
|
|
"unet": unet,
|
|
"scheduler": scheduler,
|
|
"vqvae": vae,
|
|
"bert": text_encoder,
|
|
"tokenizer": tokenizer,
|
|
}
|
|
return components
|
|
|
|
def get_dummy_inputs(self, device, seed=0):
|
|
if str(device).startswith("mps"):
|
|
generator = torch.manual_seed(seed)
|
|
else:
|
|
generator = torch.Generator(device=device).manual_seed(seed)
|
|
inputs = {
|
|
"prompt": "A painting of a squirrel eating a burger",
|
|
"generator": generator,
|
|
"num_inference_steps": 2,
|
|
"guidance_scale": 6.0,
|
|
"output_type": "np",
|
|
}
|
|
return inputs
|
|
|
|
def test_inference_text2img(self):
|
|
device = "cpu" # ensure determinism for the device-dependent torch.Generator
|
|
|
|
components = self.get_dummy_components()
|
|
pipe = LDMTextToImagePipeline(**components)
|
|
pipe.to(device)
|
|
pipe.set_progress_bar_config(disable=None)
|
|
|
|
inputs = self.get_dummy_inputs(device)
|
|
image = pipe(**inputs).images
|
|
image_slice = image[0, -3:, -3:, -1]
|
|
|
|
assert image.shape == (1, 16, 16, 3)
|
|
expected_slice = np.array([0.6101, 0.6156, 0.5622, 0.4895, 0.6661, 0.3804, 0.5748, 0.6136, 0.5014])
|
|
|
|
assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-3
|
|
|
|
|
|
@nightly
|
|
@require_torch_accelerator
|
|
class LDMTextToImagePipelineSlowTests(unittest.TestCase):
|
|
def setUp(self):
|
|
super().setUp()
|
|
gc.collect()
|
|
backend_empty_cache(torch_device)
|
|
|
|
def tearDown(self):
|
|
super().tearDown()
|
|
gc.collect()
|
|
backend_empty_cache(torch_device)
|
|
|
|
def get_inputs(self, device, dtype=torch.float32, seed=0):
|
|
generator = torch.manual_seed(seed)
|
|
latents = np.random.RandomState(seed).standard_normal((1, 4, 32, 32))
|
|
latents = torch.from_numpy(latents).to(device=device, dtype=dtype)
|
|
inputs = {
|
|
"prompt": "A painting of a squirrel eating a burger",
|
|
"latents": latents,
|
|
"generator": generator,
|
|
"num_inference_steps": 3,
|
|
"guidance_scale": 6.0,
|
|
"output_type": "np",
|
|
}
|
|
return inputs
|
|
|
|
def test_ldm_default_ddim(self):
|
|
pipe = LDMTextToImagePipeline.from_pretrained("CompVis/ldm-text2im-large-256").to(torch_device)
|
|
pipe.set_progress_bar_config(disable=None)
|
|
|
|
inputs = self.get_inputs(torch_device)
|
|
image = pipe(**inputs).images
|
|
image_slice = image[0, -3:, -3:, -1].flatten()
|
|
|
|
assert image.shape == (1, 256, 256, 3)
|
|
expected_slice = np.array([0.51825, 0.52850, 0.52543, 0.54258, 0.52304, 0.52569, 0.54363, 0.55276, 0.56878])
|
|
max_diff = np.abs(expected_slice - image_slice).max()
|
|
assert max_diff < 1e-3
|
|
|
|
|
|
@nightly
|
|
@require_torch_accelerator
|
|
class LDMTextToImagePipelineNightlyTests(unittest.TestCase):
|
|
def setUp(self):
|
|
super().setUp()
|
|
gc.collect()
|
|
backend_empty_cache(torch_device)
|
|
|
|
def tearDown(self):
|
|
super().tearDown()
|
|
gc.collect()
|
|
backend_empty_cache(torch_device)
|
|
|
|
def get_inputs(self, device, dtype=torch.float32, seed=0):
|
|
generator = torch.manual_seed(seed)
|
|
latents = np.random.RandomState(seed).standard_normal((1, 4, 32, 32))
|
|
latents = torch.from_numpy(latents).to(device=device, dtype=dtype)
|
|
inputs = {
|
|
"prompt": "A painting of a squirrel eating a burger",
|
|
"latents": latents,
|
|
"generator": generator,
|
|
"num_inference_steps": 50,
|
|
"guidance_scale": 6.0,
|
|
"output_type": "np",
|
|
}
|
|
return inputs
|
|
|
|
def test_ldm_default_ddim(self):
|
|
pipe = LDMTextToImagePipeline.from_pretrained("CompVis/ldm-text2im-large-256").to(torch_device)
|
|
pipe.set_progress_bar_config(disable=None)
|
|
|
|
inputs = self.get_inputs(torch_device)
|
|
image = pipe(**inputs).images[0]
|
|
|
|
expected_image = load_numpy(
|
|
"https://huggingface.co/datasets/diffusers/test-arrays/resolve/main/ldm_text2img/ldm_large_256_ddim.npy"
|
|
)
|
|
max_diff = np.abs(expected_image - image).max()
|
|
assert max_diff < 1e-3
|