mirror of
https://github.com/huggingface/diffusers.git
synced 2026-01-27 17:22:53 +03:00
366 lines
15 KiB
Python
366 lines
15 KiB
Python
#!/usr/bin/env python
|
|
# coding=utf-8
|
|
# Copyright 2025 The HuggingFace Inc. team. All rights reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
|
|
import logging
|
|
import os
|
|
import shutil
|
|
import sys
|
|
import tempfile
|
|
|
|
from diffusers import DiffusionPipeline, UNet2DConditionModel # noqa: E402
|
|
|
|
|
|
sys.path.append("..")
|
|
from test_examples_utils import ExamplesTestsAccelerate, run_command # noqa: E402
|
|
|
|
|
|
logging.basicConfig(level=logging.DEBUG)
|
|
|
|
logger = logging.getLogger()
|
|
stream_handler = logging.StreamHandler(sys.stdout)
|
|
logger.addHandler(stream_handler)
|
|
|
|
|
|
class TextToImage(ExamplesTestsAccelerate):
|
|
def test_text_to_image(self):
|
|
with tempfile.TemporaryDirectory() as tmpdir:
|
|
test_args = f"""
|
|
examples/text_to_image/train_text_to_image.py
|
|
--pretrained_model_name_or_path hf-internal-testing/tiny-stable-diffusion-pipe
|
|
--dataset_name hf-internal-testing/dummy_image_text_data
|
|
--resolution 64
|
|
--center_crop
|
|
--random_flip
|
|
--train_batch_size 1
|
|
--gradient_accumulation_steps 1
|
|
--max_train_steps 2
|
|
--learning_rate 5.0e-04
|
|
--scale_lr
|
|
--lr_scheduler constant
|
|
--lr_warmup_steps 0
|
|
--output_dir {tmpdir}
|
|
""".split()
|
|
|
|
run_command(self._launch_args + test_args)
|
|
# save_pretrained smoke test
|
|
self.assertTrue(os.path.isfile(os.path.join(tmpdir, "unet", "diffusion_pytorch_model.safetensors")))
|
|
self.assertTrue(os.path.isfile(os.path.join(tmpdir, "scheduler", "scheduler_config.json")))
|
|
|
|
def test_text_to_image_checkpointing(self):
|
|
pretrained_model_name_or_path = "hf-internal-testing/tiny-stable-diffusion-pipe"
|
|
prompt = "a prompt"
|
|
|
|
with tempfile.TemporaryDirectory() as tmpdir:
|
|
# Run training script with checkpointing
|
|
# max_train_steps == 4, checkpointing_steps == 2
|
|
# Should create checkpoints at steps 2, 4
|
|
|
|
initial_run_args = f"""
|
|
examples/text_to_image/train_text_to_image.py
|
|
--pretrained_model_name_or_path {pretrained_model_name_or_path}
|
|
--dataset_name hf-internal-testing/dummy_image_text_data
|
|
--resolution 64
|
|
--center_crop
|
|
--random_flip
|
|
--train_batch_size 1
|
|
--gradient_accumulation_steps 1
|
|
--max_train_steps 4
|
|
--learning_rate 5.0e-04
|
|
--scale_lr
|
|
--lr_scheduler constant
|
|
--lr_warmup_steps 0
|
|
--output_dir {tmpdir}
|
|
--checkpointing_steps=2
|
|
--seed=0
|
|
""".split()
|
|
|
|
run_command(self._launch_args + initial_run_args)
|
|
|
|
pipe = DiffusionPipeline.from_pretrained(tmpdir, safety_checker=None)
|
|
pipe(prompt, num_inference_steps=1)
|
|
|
|
# check checkpoint directories exist
|
|
self.assertEqual(
|
|
{x for x in os.listdir(tmpdir) if "checkpoint" in x},
|
|
{"checkpoint-2", "checkpoint-4"},
|
|
)
|
|
|
|
# check can run an intermediate checkpoint
|
|
unet = UNet2DConditionModel.from_pretrained(tmpdir, subfolder="checkpoint-2/unet")
|
|
pipe = DiffusionPipeline.from_pretrained(pretrained_model_name_or_path, unet=unet, safety_checker=None)
|
|
pipe(prompt, num_inference_steps=1)
|
|
|
|
# Remove checkpoint 2 so that we can check only later checkpoints exist after resuming
|
|
shutil.rmtree(os.path.join(tmpdir, "checkpoint-2"))
|
|
|
|
# Run training script for 2 total steps resuming from checkpoint 4
|
|
|
|
resume_run_args = f"""
|
|
examples/text_to_image/train_text_to_image.py
|
|
--pretrained_model_name_or_path {pretrained_model_name_or_path}
|
|
--dataset_name hf-internal-testing/dummy_image_text_data
|
|
--resolution 64
|
|
--center_crop
|
|
--random_flip
|
|
--train_batch_size 1
|
|
--gradient_accumulation_steps 1
|
|
--max_train_steps 2
|
|
--learning_rate 5.0e-04
|
|
--scale_lr
|
|
--lr_scheduler constant
|
|
--lr_warmup_steps 0
|
|
--output_dir {tmpdir}
|
|
--checkpointing_steps=1
|
|
--resume_from_checkpoint=checkpoint-4
|
|
--seed=0
|
|
""".split()
|
|
|
|
run_command(self._launch_args + resume_run_args)
|
|
|
|
# check can run new fully trained pipeline
|
|
pipe = DiffusionPipeline.from_pretrained(tmpdir, safety_checker=None)
|
|
pipe(prompt, num_inference_steps=1)
|
|
|
|
# no checkpoint-2 -> check old checkpoints do not exist
|
|
# check new checkpoints exist
|
|
self.assertEqual(
|
|
{x for x in os.listdir(tmpdir) if "checkpoint" in x},
|
|
{"checkpoint-4", "checkpoint-5"},
|
|
)
|
|
|
|
def test_text_to_image_checkpointing_use_ema(self):
|
|
pretrained_model_name_or_path = "hf-internal-testing/tiny-stable-diffusion-pipe"
|
|
prompt = "a prompt"
|
|
|
|
with tempfile.TemporaryDirectory() as tmpdir:
|
|
# Run training script with checkpointing
|
|
# max_train_steps == 4, checkpointing_steps == 2
|
|
# Should create checkpoints at steps 2, 4
|
|
|
|
initial_run_args = f"""
|
|
examples/text_to_image/train_text_to_image.py
|
|
--pretrained_model_name_or_path {pretrained_model_name_or_path}
|
|
--dataset_name hf-internal-testing/dummy_image_text_data
|
|
--resolution 64
|
|
--center_crop
|
|
--random_flip
|
|
--train_batch_size 1
|
|
--gradient_accumulation_steps 1
|
|
--max_train_steps 4
|
|
--learning_rate 5.0e-04
|
|
--scale_lr
|
|
--lr_scheduler constant
|
|
--lr_warmup_steps 0
|
|
--output_dir {tmpdir}
|
|
--checkpointing_steps=2
|
|
--use_ema
|
|
--seed=0
|
|
""".split()
|
|
|
|
run_command(self._launch_args + initial_run_args)
|
|
|
|
pipe = DiffusionPipeline.from_pretrained(tmpdir, safety_checker=None)
|
|
pipe(prompt, num_inference_steps=2)
|
|
|
|
# check checkpoint directories exist
|
|
self.assertEqual(
|
|
{x for x in os.listdir(tmpdir) if "checkpoint" in x},
|
|
{"checkpoint-2", "checkpoint-4"},
|
|
)
|
|
|
|
# check can run an intermediate checkpoint
|
|
unet = UNet2DConditionModel.from_pretrained(tmpdir, subfolder="checkpoint-2/unet")
|
|
pipe = DiffusionPipeline.from_pretrained(pretrained_model_name_or_path, unet=unet, safety_checker=None)
|
|
pipe(prompt, num_inference_steps=1)
|
|
|
|
# Remove checkpoint 2 so that we can check only later checkpoints exist after resuming
|
|
shutil.rmtree(os.path.join(tmpdir, "checkpoint-2"))
|
|
|
|
# Run training script for 2 total steps resuming from checkpoint 4
|
|
|
|
resume_run_args = f"""
|
|
examples/text_to_image/train_text_to_image.py
|
|
--pretrained_model_name_or_path {pretrained_model_name_or_path}
|
|
--dataset_name hf-internal-testing/dummy_image_text_data
|
|
--resolution 64
|
|
--center_crop
|
|
--random_flip
|
|
--train_batch_size 1
|
|
--gradient_accumulation_steps 1
|
|
--max_train_steps 2
|
|
--learning_rate 5.0e-04
|
|
--scale_lr
|
|
--lr_scheduler constant
|
|
--lr_warmup_steps 0
|
|
--output_dir {tmpdir}
|
|
--checkpointing_steps=1
|
|
--resume_from_checkpoint=checkpoint-4
|
|
--use_ema
|
|
--seed=0
|
|
""".split()
|
|
|
|
run_command(self._launch_args + resume_run_args)
|
|
|
|
# check can run new fully trained pipeline
|
|
pipe = DiffusionPipeline.from_pretrained(tmpdir, safety_checker=None)
|
|
pipe(prompt, num_inference_steps=1)
|
|
|
|
# no checkpoint-2 -> check old checkpoints do not exist
|
|
# check new checkpoints exist
|
|
self.assertEqual(
|
|
{x for x in os.listdir(tmpdir) if "checkpoint" in x},
|
|
{"checkpoint-4", "checkpoint-5"},
|
|
)
|
|
|
|
def test_text_to_image_checkpointing_checkpoints_total_limit(self):
|
|
pretrained_model_name_or_path = "hf-internal-testing/tiny-stable-diffusion-pipe"
|
|
prompt = "a prompt"
|
|
|
|
with tempfile.TemporaryDirectory() as tmpdir:
|
|
# Run training script with checkpointing
|
|
# max_train_steps == 6, checkpointing_steps == 2, checkpoints_total_limit == 2
|
|
# Should create checkpoints at steps 2, 4, 6
|
|
# with checkpoint at step 2 deleted
|
|
|
|
initial_run_args = f"""
|
|
examples/text_to_image/train_text_to_image.py
|
|
--pretrained_model_name_or_path {pretrained_model_name_or_path}
|
|
--dataset_name hf-internal-testing/dummy_image_text_data
|
|
--resolution 64
|
|
--center_crop
|
|
--random_flip
|
|
--train_batch_size 1
|
|
--gradient_accumulation_steps 1
|
|
--max_train_steps 6
|
|
--learning_rate 5.0e-04
|
|
--scale_lr
|
|
--lr_scheduler constant
|
|
--lr_warmup_steps 0
|
|
--output_dir {tmpdir}
|
|
--checkpointing_steps=2
|
|
--checkpoints_total_limit=2
|
|
--seed=0
|
|
""".split()
|
|
|
|
run_command(self._launch_args + initial_run_args)
|
|
|
|
pipe = DiffusionPipeline.from_pretrained(tmpdir, safety_checker=None)
|
|
pipe(prompt, num_inference_steps=1)
|
|
|
|
# check checkpoint directories exist
|
|
# checkpoint-2 should have been deleted
|
|
self.assertEqual({x for x in os.listdir(tmpdir) if "checkpoint" in x}, {"checkpoint-4", "checkpoint-6"})
|
|
|
|
def test_text_to_image_checkpointing_checkpoints_total_limit_removes_multiple_checkpoints(self):
|
|
pretrained_model_name_or_path = "hf-internal-testing/tiny-stable-diffusion-pipe"
|
|
prompt = "a prompt"
|
|
|
|
with tempfile.TemporaryDirectory() as tmpdir:
|
|
# Run training script with checkpointing
|
|
# max_train_steps == 4, checkpointing_steps == 2
|
|
# Should create checkpoints at steps 2, 4
|
|
|
|
initial_run_args = f"""
|
|
examples/text_to_image/train_text_to_image.py
|
|
--pretrained_model_name_or_path {pretrained_model_name_or_path}
|
|
--dataset_name hf-internal-testing/dummy_image_text_data
|
|
--resolution 64
|
|
--center_crop
|
|
--random_flip
|
|
--train_batch_size 1
|
|
--gradient_accumulation_steps 1
|
|
--max_train_steps 4
|
|
--learning_rate 5.0e-04
|
|
--scale_lr
|
|
--lr_scheduler constant
|
|
--lr_warmup_steps 0
|
|
--output_dir {tmpdir}
|
|
--checkpointing_steps=2
|
|
--seed=0
|
|
""".split()
|
|
|
|
run_command(self._launch_args + initial_run_args)
|
|
|
|
pipe = DiffusionPipeline.from_pretrained(tmpdir, safety_checker=None)
|
|
pipe(prompt, num_inference_steps=1)
|
|
|
|
# check checkpoint directories exist
|
|
self.assertEqual(
|
|
{x for x in os.listdir(tmpdir) if "checkpoint" in x},
|
|
{"checkpoint-2", "checkpoint-4"},
|
|
)
|
|
|
|
# resume and we should try to checkpoint at 6, where we'll have to remove
|
|
# checkpoint-2 and checkpoint-4 instead of just a single previous checkpoint
|
|
|
|
resume_run_args = f"""
|
|
examples/text_to_image/train_text_to_image.py
|
|
--pretrained_model_name_or_path {pretrained_model_name_or_path}
|
|
--dataset_name hf-internal-testing/dummy_image_text_data
|
|
--resolution 64
|
|
--center_crop
|
|
--random_flip
|
|
--train_batch_size 1
|
|
--gradient_accumulation_steps 1
|
|
--max_train_steps 8
|
|
--learning_rate 5.0e-04
|
|
--scale_lr
|
|
--lr_scheduler constant
|
|
--lr_warmup_steps 0
|
|
--output_dir {tmpdir}
|
|
--checkpointing_steps=2
|
|
--resume_from_checkpoint=checkpoint-4
|
|
--checkpoints_total_limit=2
|
|
--seed=0
|
|
""".split()
|
|
|
|
run_command(self._launch_args + resume_run_args)
|
|
|
|
pipe = DiffusionPipeline.from_pretrained(tmpdir, safety_checker=None)
|
|
pipe(prompt, num_inference_steps=1)
|
|
|
|
# check checkpoint directories exist
|
|
self.assertEqual(
|
|
{x for x in os.listdir(tmpdir) if "checkpoint" in x},
|
|
{"checkpoint-6", "checkpoint-8"},
|
|
)
|
|
|
|
|
|
class TextToImageSDXL(ExamplesTestsAccelerate):
|
|
def test_text_to_image_sdxl(self):
|
|
with tempfile.TemporaryDirectory() as tmpdir:
|
|
test_args = f"""
|
|
examples/text_to_image/train_text_to_image_sdxl.py
|
|
--pretrained_model_name_or_path hf-internal-testing/tiny-stable-diffusion-xl-pipe
|
|
--dataset_name hf-internal-testing/dummy_image_text_data
|
|
--resolution 64
|
|
--center_crop
|
|
--random_flip
|
|
--train_batch_size 1
|
|
--gradient_accumulation_steps 1
|
|
--max_train_steps 2
|
|
--learning_rate 5.0e-04
|
|
--scale_lr
|
|
--lr_scheduler constant
|
|
--lr_warmup_steps 0
|
|
--output_dir {tmpdir}
|
|
""".split()
|
|
|
|
run_command(self._launch_args + test_args)
|
|
# save_pretrained smoke test
|
|
self.assertTrue(os.path.isfile(os.path.join(tmpdir, "unet", "diffusion_pytorch_model.safetensors")))
|
|
self.assertTrue(os.path.isfile(os.path.join(tmpdir, "scheduler", "scheduler_config.json")))
|