1
0
mirror of https://github.com/huggingface/diffusers.git synced 2026-01-29 07:22:12 +03:00
Files
diffusers/tests/models/unets/test_models_unet_2d.py
Aryan beacaa5528 [core] Layerwise Upcasting (#10347)
* update

* update

* make style

* remove dynamo disable

* add coauthor

Co-Authored-By: Dhruv Nair <dhruv.nair@gmail.com>

* update

* update

* update

* update mixin

* add some basic tests

* update

* update

* non_blocking

* improvements

* update

* norm.* -> norm

* apply suggestions from review

* add example

* update hook implementation to the latest changes from pyramid attention broadcast

* deinitialize should raise an error

* update doc page

* Apply suggestions from code review

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* update docs

* update

* refactor

* fix _always_upcast_modules for asym ae and vq_model

* fix lumina embedding forward to not depend on weight dtype

* refactor tests

* add simple lora inference tests

* _always_upcast_modules -> _precision_sensitive_module_patterns

* remove todo comments about review; revert changes to self.dtype in unets because .dtype on ModelMixin should be able to handle fp8 weight case

* check layer dtypes in lora test

* fix UNet1DModelTests::test_layerwise_upcasting_inference

* _precision_sensitive_module_patterns -> _skip_layerwise_casting_patterns based on feedback

* skip test in NCSNppModelTests

* skip tests for AutoencoderTinyTests

* skip tests for AutoencoderOobleckTests

* skip tests for UNet1DModelTests - unsupported pytorch operations

* layerwise_upcasting -> layerwise_casting

* skip tests for UNetRLModelTests; needs next pytorch release for currently unimplemented operation support

* add layerwise fp8 pipeline test

* use xfail

* Apply suggestions from code review

Co-authored-by: Dhruv Nair <dhruv.nair@gmail.com>

* add assertion with fp32 comparison; add tolerance to fp8-fp32 vs fp32-fp32 comparison (required for a few models' test to pass)

* add note about memory consumption on tesla CI runner for failing test

---------

Co-authored-by: Dhruv Nair <dhruv.nair@gmail.com>
Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>
2025-01-22 19:49:37 +05:30

416 lines
14 KiB
Python

# coding=utf-8
# Copyright 2024 HuggingFace Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import gc
import math
import unittest
import torch
from diffusers import UNet2DModel
from diffusers.utils import logging
from diffusers.utils.testing_utils import (
enable_full_determinism,
floats_tensor,
require_torch_accelerator,
slow,
torch_all_close,
torch_device,
)
from ..test_modeling_common import ModelTesterMixin, UNetTesterMixin
logger = logging.get_logger(__name__)
enable_full_determinism()
class Unet2DModelTests(ModelTesterMixin, UNetTesterMixin, unittest.TestCase):
model_class = UNet2DModel
main_input_name = "sample"
@property
def dummy_input(self):
batch_size = 4
num_channels = 3
sizes = (32, 32)
noise = floats_tensor((batch_size, num_channels) + sizes).to(torch_device)
time_step = torch.tensor([10]).to(torch_device)
return {"sample": noise, "timestep": time_step}
@property
def input_shape(self):
return (3, 32, 32)
@property
def output_shape(self):
return (3, 32, 32)
def prepare_init_args_and_inputs_for_common(self):
init_dict = {
"block_out_channels": (4, 8),
"norm_num_groups": 2,
"down_block_types": ("DownBlock2D", "AttnDownBlock2D"),
"up_block_types": ("AttnUpBlock2D", "UpBlock2D"),
"attention_head_dim": 3,
"out_channels": 3,
"in_channels": 3,
"layers_per_block": 2,
"sample_size": 32,
}
inputs_dict = self.dummy_input
return init_dict, inputs_dict
def test_mid_block_attn_groups(self):
init_dict, inputs_dict = self.prepare_init_args_and_inputs_for_common()
init_dict["add_attention"] = True
init_dict["attn_norm_num_groups"] = 4
model = self.model_class(**init_dict)
model.to(torch_device)
model.eval()
self.assertIsNotNone(
model.mid_block.attentions[0].group_norm, "Mid block Attention group norm should exist but does not."
)
self.assertEqual(
model.mid_block.attentions[0].group_norm.num_groups,
init_dict["attn_norm_num_groups"],
"Mid block Attention group norm does not have the expected number of groups.",
)
with torch.no_grad():
output = model(**inputs_dict)
if isinstance(output, dict):
output = output.to_tuple()[0]
self.assertIsNotNone(output)
expected_shape = inputs_dict["sample"].shape
self.assertEqual(output.shape, expected_shape, "Input and output shapes do not match")
def test_mid_block_none(self):
init_dict, inputs_dict = self.prepare_init_args_and_inputs_for_common()
mid_none_init_dict, mid_none_inputs_dict = self.prepare_init_args_and_inputs_for_common()
mid_none_init_dict["mid_block_type"] = None
model = self.model_class(**init_dict)
model.to(torch_device)
model.eval()
mid_none_model = self.model_class(**mid_none_init_dict)
mid_none_model.to(torch_device)
mid_none_model.eval()
self.assertIsNone(mid_none_model.mid_block, "Mid block should not exist.")
with torch.no_grad():
output = model(**inputs_dict)
if isinstance(output, dict):
output = output.to_tuple()[0]
with torch.no_grad():
mid_none_output = mid_none_model(**mid_none_inputs_dict)
if isinstance(mid_none_output, dict):
mid_none_output = mid_none_output.to_tuple()[0]
self.assertFalse(torch.allclose(output, mid_none_output, rtol=1e-3), "outputs should be different.")
def test_gradient_checkpointing_is_applied(self):
expected_set = {
"AttnUpBlock2D",
"AttnDownBlock2D",
"UNetMidBlock2D",
"UpBlock2D",
"DownBlock2D",
}
# NOTE: unlike UNet2DConditionModel, UNet2DModel does not currently support tuples for `attention_head_dim`
attention_head_dim = 8
block_out_channels = (16, 32)
super().test_gradient_checkpointing_is_applied(
expected_set=expected_set, attention_head_dim=attention_head_dim, block_out_channels=block_out_channels
)
class UNetLDMModelTests(ModelTesterMixin, UNetTesterMixin, unittest.TestCase):
model_class = UNet2DModel
main_input_name = "sample"
@property
def dummy_input(self):
batch_size = 4
num_channels = 4
sizes = (32, 32)
noise = floats_tensor((batch_size, num_channels) + sizes).to(torch_device)
time_step = torch.tensor([10]).to(torch_device)
return {"sample": noise, "timestep": time_step}
@property
def input_shape(self):
return (4, 32, 32)
@property
def output_shape(self):
return (4, 32, 32)
def prepare_init_args_and_inputs_for_common(self):
init_dict = {
"sample_size": 32,
"in_channels": 4,
"out_channels": 4,
"layers_per_block": 2,
"block_out_channels": (32, 64),
"attention_head_dim": 32,
"down_block_types": ("DownBlock2D", "DownBlock2D"),
"up_block_types": ("UpBlock2D", "UpBlock2D"),
}
inputs_dict = self.dummy_input
return init_dict, inputs_dict
def test_from_pretrained_hub(self):
model, loading_info = UNet2DModel.from_pretrained("fusing/unet-ldm-dummy-update", output_loading_info=True)
self.assertIsNotNone(model)
self.assertEqual(len(loading_info["missing_keys"]), 0)
model.to(torch_device)
image = model(**self.dummy_input).sample
assert image is not None, "Make sure output is not None"
@require_torch_accelerator
def test_from_pretrained_accelerate(self):
model, _ = UNet2DModel.from_pretrained("fusing/unet-ldm-dummy-update", output_loading_info=True)
model.to(torch_device)
image = model(**self.dummy_input).sample
assert image is not None, "Make sure output is not None"
@require_torch_accelerator
def test_from_pretrained_accelerate_wont_change_results(self):
# by default model loading will use accelerate as `low_cpu_mem_usage=True`
model_accelerate, _ = UNet2DModel.from_pretrained("fusing/unet-ldm-dummy-update", output_loading_info=True)
model_accelerate.to(torch_device)
model_accelerate.eval()
noise = torch.randn(
1,
model_accelerate.config.in_channels,
model_accelerate.config.sample_size,
model_accelerate.config.sample_size,
generator=torch.manual_seed(0),
)
noise = noise.to(torch_device)
time_step = torch.tensor([10] * noise.shape[0]).to(torch_device)
arr_accelerate = model_accelerate(noise, time_step)["sample"]
# two models don't need to stay in the device at the same time
del model_accelerate
torch.cuda.empty_cache()
gc.collect()
model_normal_load, _ = UNet2DModel.from_pretrained(
"fusing/unet-ldm-dummy-update", output_loading_info=True, low_cpu_mem_usage=False
)
model_normal_load.to(torch_device)
model_normal_load.eval()
arr_normal_load = model_normal_load(noise, time_step)["sample"]
assert torch_all_close(arr_accelerate, arr_normal_load, rtol=1e-3)
def test_output_pretrained(self):
model = UNet2DModel.from_pretrained("fusing/unet-ldm-dummy-update")
model.eval()
model.to(torch_device)
noise = torch.randn(
1,
model.config.in_channels,
model.config.sample_size,
model.config.sample_size,
generator=torch.manual_seed(0),
)
noise = noise.to(torch_device)
time_step = torch.tensor([10] * noise.shape[0]).to(torch_device)
with torch.no_grad():
output = model(noise, time_step).sample
output_slice = output[0, -1, -3:, -3:].flatten().cpu()
# fmt: off
expected_output_slice = torch.tensor([-13.3258, -20.1100, -15.9873, -17.6617, -23.0596, -17.9419, -13.3675, -16.1889, -12.3800])
# fmt: on
self.assertTrue(torch_all_close(output_slice, expected_output_slice, rtol=1e-3))
def test_gradient_checkpointing_is_applied(self):
expected_set = {"DownBlock2D", "UNetMidBlock2D", "UpBlock2D"}
# NOTE: unlike UNet2DConditionModel, UNet2DModel does not currently support tuples for `attention_head_dim`
attention_head_dim = 32
block_out_channels = (32, 64)
super().test_gradient_checkpointing_is_applied(
expected_set=expected_set, attention_head_dim=attention_head_dim, block_out_channels=block_out_channels
)
class NCSNppModelTests(ModelTesterMixin, UNetTesterMixin, unittest.TestCase):
model_class = UNet2DModel
main_input_name = "sample"
@property
def dummy_input(self, sizes=(32, 32)):
batch_size = 4
num_channels = 3
noise = floats_tensor((batch_size, num_channels) + sizes).to(torch_device)
time_step = torch.tensor(batch_size * [10]).to(dtype=torch.int32, device=torch_device)
return {"sample": noise, "timestep": time_step}
@property
def input_shape(self):
return (3, 32, 32)
@property
def output_shape(self):
return (3, 32, 32)
def prepare_init_args_and_inputs_for_common(self):
init_dict = {
"block_out_channels": [32, 64, 64, 64],
"in_channels": 3,
"layers_per_block": 1,
"out_channels": 3,
"time_embedding_type": "fourier",
"norm_eps": 1e-6,
"mid_block_scale_factor": math.sqrt(2.0),
"norm_num_groups": None,
"down_block_types": [
"SkipDownBlock2D",
"AttnSkipDownBlock2D",
"SkipDownBlock2D",
"SkipDownBlock2D",
],
"up_block_types": [
"SkipUpBlock2D",
"SkipUpBlock2D",
"AttnSkipUpBlock2D",
"SkipUpBlock2D",
],
}
inputs_dict = self.dummy_input
return init_dict, inputs_dict
@slow
def test_from_pretrained_hub(self):
model, loading_info = UNet2DModel.from_pretrained("google/ncsnpp-celebahq-256", output_loading_info=True)
self.assertIsNotNone(model)
self.assertEqual(len(loading_info["missing_keys"]), 0)
model.to(torch_device)
inputs = self.dummy_input
noise = floats_tensor((4, 3) + (256, 256)).to(torch_device)
inputs["sample"] = noise
image = model(**inputs)
assert image is not None, "Make sure output is not None"
@slow
def test_output_pretrained_ve_mid(self):
model = UNet2DModel.from_pretrained("google/ncsnpp-celebahq-256")
model.to(torch_device)
batch_size = 4
num_channels = 3
sizes = (256, 256)
noise = torch.ones((batch_size, num_channels) + sizes).to(torch_device)
time_step = torch.tensor(batch_size * [1e-4]).to(torch_device)
with torch.no_grad():
output = model(noise, time_step).sample
output_slice = output[0, -3:, -3:, -1].flatten().cpu()
# fmt: off
expected_output_slice = torch.tensor([-4836.2178, -6487.1470, -3816.8196, -7964.9302, -10966.3037, -20043.5957, 8137.0513, 2340.3328, 544.6056])
# fmt: on
self.assertTrue(torch_all_close(output_slice, expected_output_slice, rtol=1e-2))
def test_output_pretrained_ve_large(self):
model = UNet2DModel.from_pretrained("fusing/ncsnpp-ffhq-ve-dummy-update")
model.to(torch_device)
batch_size = 4
num_channels = 3
sizes = (32, 32)
noise = torch.ones((batch_size, num_channels) + sizes).to(torch_device)
time_step = torch.tensor(batch_size * [1e-4]).to(torch_device)
with torch.no_grad():
output = model(noise, time_step).sample
output_slice = output[0, -3:, -3:, -1].flatten().cpu()
# fmt: off
expected_output_slice = torch.tensor([-0.0325, -0.0900, -0.0869, -0.0332, -0.0725, -0.0270, -0.0101, 0.0227, 0.0256])
# fmt: on
self.assertTrue(torch_all_close(output_slice, expected_output_slice, rtol=1e-2))
@unittest.skip("Test not supported.")
def test_forward_with_norm_groups(self):
# not required for this model
pass
def test_gradient_checkpointing_is_applied(self):
expected_set = {
"UNetMidBlock2D",
}
block_out_channels = (32, 64, 64, 64)
super().test_gradient_checkpointing_is_applied(
expected_set=expected_set, block_out_channels=block_out_channels
)
def test_effective_gradient_checkpointing(self):
super().test_effective_gradient_checkpointing(skip={"time_proj.weight"})
@unittest.skip(
"To make layerwise casting work with this model, we will have to update the implementation. Due to potentially low usage, we don't support it here."
)
def test_layerwise_casting_inference(self):
pass
@unittest.skip(
"To make layerwise casting work with this model, we will have to update the implementation. Due to potentially low usage, we don't support it here."
)
def test_layerwise_casting_memory(self):
pass