mirror of
https://github.com/huggingface/diffusers.git
synced 2026-01-27 17:22:53 +03:00
--------- Co-authored-by: Tolga Cangöz <mtcangoz@gmail.com> Co-authored-by: Tolga Cangöz <46008593+tolgacangoz@users.noreply.github.com>
240 lines
7.4 KiB
Python
240 lines
7.4 KiB
Python
# Copyright 2025 The HuggingFace Team.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
|
|
import gc
|
|
import unittest
|
|
|
|
import numpy as np
|
|
import torch
|
|
from PIL import Image
|
|
from transformers import (
|
|
AutoTokenizer,
|
|
CLIPImageProcessor,
|
|
CLIPVisionConfig,
|
|
CLIPVisionModelWithProjection,
|
|
T5EncoderModel,
|
|
)
|
|
|
|
from diffusers import (
|
|
AutoencoderKLWan,
|
|
FlowMatchEulerDiscreteScheduler,
|
|
WanAnimatePipeline,
|
|
WanAnimateTransformer3DModel,
|
|
)
|
|
|
|
from ...testing_utils import (
|
|
backend_empty_cache,
|
|
enable_full_determinism,
|
|
require_torch_accelerator,
|
|
slow,
|
|
torch_device,
|
|
)
|
|
from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_IMAGE_PARAMS, TEXT_TO_IMAGE_PARAMS
|
|
from ..test_pipelines_common import PipelineTesterMixin
|
|
|
|
|
|
enable_full_determinism()
|
|
|
|
|
|
class WanAnimatePipelineFastTests(PipelineTesterMixin, unittest.TestCase):
|
|
pipeline_class = WanAnimatePipeline
|
|
params = TEXT_TO_IMAGE_PARAMS - {"cross_attention_kwargs"}
|
|
batch_params = TEXT_TO_IMAGE_BATCH_PARAMS
|
|
image_params = TEXT_TO_IMAGE_IMAGE_PARAMS
|
|
image_latents_params = TEXT_TO_IMAGE_IMAGE_PARAMS
|
|
required_optional_params = frozenset(
|
|
[
|
|
"num_inference_steps",
|
|
"generator",
|
|
"latents",
|
|
"return_dict",
|
|
"callback_on_step_end",
|
|
"callback_on_step_end_tensor_inputs",
|
|
]
|
|
)
|
|
test_xformers_attention = False
|
|
supports_dduf = False
|
|
|
|
def get_dummy_components(self):
|
|
torch.manual_seed(0)
|
|
vae = AutoencoderKLWan(
|
|
base_dim=3,
|
|
z_dim=16,
|
|
dim_mult=[1, 1, 1, 1],
|
|
num_res_blocks=1,
|
|
temperal_downsample=[False, True, True],
|
|
)
|
|
|
|
torch.manual_seed(0)
|
|
scheduler = FlowMatchEulerDiscreteScheduler(shift=7.0)
|
|
text_encoder = T5EncoderModel.from_pretrained("hf-internal-testing/tiny-random-t5")
|
|
tokenizer = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-t5")
|
|
|
|
torch.manual_seed(0)
|
|
channel_sizes = {"4": 16, "8": 16, "16": 16}
|
|
transformer = WanAnimateTransformer3DModel(
|
|
patch_size=(1, 2, 2),
|
|
num_attention_heads=2,
|
|
attention_head_dim=12,
|
|
in_channels=36,
|
|
latent_channels=16,
|
|
out_channels=16,
|
|
text_dim=32,
|
|
freq_dim=256,
|
|
ffn_dim=32,
|
|
num_layers=2,
|
|
cross_attn_norm=True,
|
|
qk_norm="rms_norm_across_heads",
|
|
image_dim=4,
|
|
rope_max_seq_len=32,
|
|
motion_encoder_channel_sizes=channel_sizes,
|
|
motion_encoder_size=16,
|
|
motion_style_dim=8,
|
|
motion_dim=4,
|
|
motion_encoder_dim=16,
|
|
face_encoder_hidden_dim=16,
|
|
face_encoder_num_heads=2,
|
|
inject_face_latents_blocks=2,
|
|
)
|
|
|
|
torch.manual_seed(0)
|
|
image_encoder_config = CLIPVisionConfig(
|
|
hidden_size=4,
|
|
projection_dim=4,
|
|
num_hidden_layers=2,
|
|
num_attention_heads=2,
|
|
image_size=4,
|
|
intermediate_size=16,
|
|
patch_size=1,
|
|
)
|
|
image_encoder = CLIPVisionModelWithProjection(image_encoder_config)
|
|
|
|
torch.manual_seed(0)
|
|
image_processor = CLIPImageProcessor(crop_size=4, size=4)
|
|
|
|
components = {
|
|
"transformer": transformer,
|
|
"vae": vae,
|
|
"scheduler": scheduler,
|
|
"text_encoder": text_encoder,
|
|
"tokenizer": tokenizer,
|
|
"image_encoder": image_encoder,
|
|
"image_processor": image_processor,
|
|
}
|
|
return components
|
|
|
|
def get_dummy_inputs(self, device, seed=0):
|
|
if str(device).startswith("mps"):
|
|
generator = torch.manual_seed(seed)
|
|
else:
|
|
generator = torch.Generator(device=device).manual_seed(seed)
|
|
|
|
num_frames = 17
|
|
height = 16
|
|
width = 16
|
|
face_height = 16
|
|
face_width = 16
|
|
|
|
image = Image.new("RGB", (height, width))
|
|
pose_video = [Image.new("RGB", (height, width))] * num_frames
|
|
face_video = [Image.new("RGB", (face_height, face_width))] * num_frames
|
|
|
|
inputs = {
|
|
"image": image,
|
|
"pose_video": pose_video,
|
|
"face_video": face_video,
|
|
"prompt": "dance monkey",
|
|
"negative_prompt": "negative",
|
|
"height": height,
|
|
"width": width,
|
|
"segment_frame_length": 77, # TODO: can we set this to num_frames?
|
|
"num_inference_steps": 2,
|
|
"mode": "animate",
|
|
"prev_segment_conditioning_frames": 1,
|
|
"generator": generator,
|
|
"guidance_scale": 1.0,
|
|
"output_type": "pt",
|
|
"max_sequence_length": 16,
|
|
}
|
|
return inputs
|
|
|
|
def test_inference(self):
|
|
"""Test basic inference in animation mode."""
|
|
device = "cpu"
|
|
|
|
components = self.get_dummy_components()
|
|
pipe = self.pipeline_class(**components)
|
|
pipe.to(device)
|
|
pipe.set_progress_bar_config(disable=None)
|
|
|
|
inputs = self.get_dummy_inputs(device)
|
|
video = pipe(**inputs).frames[0]
|
|
self.assertEqual(video.shape, (17, 3, 16, 16))
|
|
|
|
expected_video = torch.randn(17, 3, 16, 16)
|
|
max_diff = np.abs(video - expected_video).max()
|
|
self.assertLessEqual(max_diff, 1e10)
|
|
|
|
def test_inference_replacement(self):
|
|
"""Test the pipeline in replacement mode with background and mask videos."""
|
|
device = "cpu"
|
|
|
|
components = self.get_dummy_components()
|
|
pipe = self.pipeline_class(**components)
|
|
pipe.to(device)
|
|
pipe.set_progress_bar_config(disable=None)
|
|
|
|
inputs = self.get_dummy_inputs(device)
|
|
inputs["mode"] = "replace"
|
|
num_frames = 17
|
|
height = 16
|
|
width = 16
|
|
inputs["background_video"] = [Image.new("RGB", (height, width))] * num_frames
|
|
inputs["mask_video"] = [Image.new("L", (height, width))] * num_frames
|
|
|
|
video = pipe(**inputs).frames[0]
|
|
self.assertEqual(video.shape, (17, 3, 16, 16))
|
|
|
|
@unittest.skip("Test not supported")
|
|
def test_attention_slicing_forward_pass(self):
|
|
pass
|
|
|
|
@unittest.skip(
|
|
"Setting the Wan Animate latents to zero at the last denoising step does not guarantee that the output will be"
|
|
" zero. I believe this is because the latents are further processed in the outer loop where we loop over"
|
|
" inference segments."
|
|
)
|
|
def test_callback_inputs(self):
|
|
pass
|
|
|
|
|
|
@slow
|
|
@require_torch_accelerator
|
|
class WanAnimatePipelineIntegrationTests(unittest.TestCase):
|
|
prompt = "A painting of a squirrel eating a burger."
|
|
|
|
def setUp(self):
|
|
super().setUp()
|
|
gc.collect()
|
|
backend_empty_cache(torch_device)
|
|
|
|
def tearDown(self):
|
|
super().tearDown()
|
|
gc.collect()
|
|
backend_empty_cache(torch_device)
|
|
|
|
@unittest.skip("TODO: test needs to be implemented")
|
|
def test_wan_animate(self):
|
|
pass
|