1
0
mirror of https://github.com/huggingface/diffusers.git synced 2026-01-27 17:22:53 +03:00
Files
diffusers/tests/pipelines/wan/test_wan_animate.py
2025-11-12 16:52:31 -10:00

240 lines
7.4 KiB
Python

# Copyright 2025 The HuggingFace Team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import gc
import unittest
import numpy as np
import torch
from PIL import Image
from transformers import (
AutoTokenizer,
CLIPImageProcessor,
CLIPVisionConfig,
CLIPVisionModelWithProjection,
T5EncoderModel,
)
from diffusers import (
AutoencoderKLWan,
FlowMatchEulerDiscreteScheduler,
WanAnimatePipeline,
WanAnimateTransformer3DModel,
)
from ...testing_utils import (
backend_empty_cache,
enable_full_determinism,
require_torch_accelerator,
slow,
torch_device,
)
from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_IMAGE_PARAMS, TEXT_TO_IMAGE_PARAMS
from ..test_pipelines_common import PipelineTesterMixin
enable_full_determinism()
class WanAnimatePipelineFastTests(PipelineTesterMixin, unittest.TestCase):
pipeline_class = WanAnimatePipeline
params = TEXT_TO_IMAGE_PARAMS - {"cross_attention_kwargs"}
batch_params = TEXT_TO_IMAGE_BATCH_PARAMS
image_params = TEXT_TO_IMAGE_IMAGE_PARAMS
image_latents_params = TEXT_TO_IMAGE_IMAGE_PARAMS
required_optional_params = frozenset(
[
"num_inference_steps",
"generator",
"latents",
"return_dict",
"callback_on_step_end",
"callback_on_step_end_tensor_inputs",
]
)
test_xformers_attention = False
supports_dduf = False
def get_dummy_components(self):
torch.manual_seed(0)
vae = AutoencoderKLWan(
base_dim=3,
z_dim=16,
dim_mult=[1, 1, 1, 1],
num_res_blocks=1,
temperal_downsample=[False, True, True],
)
torch.manual_seed(0)
scheduler = FlowMatchEulerDiscreteScheduler(shift=7.0)
text_encoder = T5EncoderModel.from_pretrained("hf-internal-testing/tiny-random-t5")
tokenizer = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-t5")
torch.manual_seed(0)
channel_sizes = {"4": 16, "8": 16, "16": 16}
transformer = WanAnimateTransformer3DModel(
patch_size=(1, 2, 2),
num_attention_heads=2,
attention_head_dim=12,
in_channels=36,
latent_channels=16,
out_channels=16,
text_dim=32,
freq_dim=256,
ffn_dim=32,
num_layers=2,
cross_attn_norm=True,
qk_norm="rms_norm_across_heads",
image_dim=4,
rope_max_seq_len=32,
motion_encoder_channel_sizes=channel_sizes,
motion_encoder_size=16,
motion_style_dim=8,
motion_dim=4,
motion_encoder_dim=16,
face_encoder_hidden_dim=16,
face_encoder_num_heads=2,
inject_face_latents_blocks=2,
)
torch.manual_seed(0)
image_encoder_config = CLIPVisionConfig(
hidden_size=4,
projection_dim=4,
num_hidden_layers=2,
num_attention_heads=2,
image_size=4,
intermediate_size=16,
patch_size=1,
)
image_encoder = CLIPVisionModelWithProjection(image_encoder_config)
torch.manual_seed(0)
image_processor = CLIPImageProcessor(crop_size=4, size=4)
components = {
"transformer": transformer,
"vae": vae,
"scheduler": scheduler,
"text_encoder": text_encoder,
"tokenizer": tokenizer,
"image_encoder": image_encoder,
"image_processor": image_processor,
}
return components
def get_dummy_inputs(self, device, seed=0):
if str(device).startswith("mps"):
generator = torch.manual_seed(seed)
else:
generator = torch.Generator(device=device).manual_seed(seed)
num_frames = 17
height = 16
width = 16
face_height = 16
face_width = 16
image = Image.new("RGB", (height, width))
pose_video = [Image.new("RGB", (height, width))] * num_frames
face_video = [Image.new("RGB", (face_height, face_width))] * num_frames
inputs = {
"image": image,
"pose_video": pose_video,
"face_video": face_video,
"prompt": "dance monkey",
"negative_prompt": "negative",
"height": height,
"width": width,
"segment_frame_length": 77, # TODO: can we set this to num_frames?
"num_inference_steps": 2,
"mode": "animate",
"prev_segment_conditioning_frames": 1,
"generator": generator,
"guidance_scale": 1.0,
"output_type": "pt",
"max_sequence_length": 16,
}
return inputs
def test_inference(self):
"""Test basic inference in animation mode."""
device = "cpu"
components = self.get_dummy_components()
pipe = self.pipeline_class(**components)
pipe.to(device)
pipe.set_progress_bar_config(disable=None)
inputs = self.get_dummy_inputs(device)
video = pipe(**inputs).frames[0]
self.assertEqual(video.shape, (17, 3, 16, 16))
expected_video = torch.randn(17, 3, 16, 16)
max_diff = np.abs(video - expected_video).max()
self.assertLessEqual(max_diff, 1e10)
def test_inference_replacement(self):
"""Test the pipeline in replacement mode with background and mask videos."""
device = "cpu"
components = self.get_dummy_components()
pipe = self.pipeline_class(**components)
pipe.to(device)
pipe.set_progress_bar_config(disable=None)
inputs = self.get_dummy_inputs(device)
inputs["mode"] = "replace"
num_frames = 17
height = 16
width = 16
inputs["background_video"] = [Image.new("RGB", (height, width))] * num_frames
inputs["mask_video"] = [Image.new("L", (height, width))] * num_frames
video = pipe(**inputs).frames[0]
self.assertEqual(video.shape, (17, 3, 16, 16))
@unittest.skip("Test not supported")
def test_attention_slicing_forward_pass(self):
pass
@unittest.skip(
"Setting the Wan Animate latents to zero at the last denoising step does not guarantee that the output will be"
" zero. I believe this is because the latents are further processed in the outer loop where we loop over"
" inference segments."
)
def test_callback_inputs(self):
pass
@slow
@require_torch_accelerator
class WanAnimatePipelineIntegrationTests(unittest.TestCase):
prompt = "A painting of a squirrel eating a burger."
def setUp(self):
super().setUp()
gc.collect()
backend_empty_cache(torch_device)
def tearDown(self):
super().tearDown()
gc.collect()
backend_empty_cache(torch_device)
@unittest.skip("TODO: test needs to be implemented")
def test_wan_animate(self):
pass