mirror of
https://github.com/huggingface/diffusers.git
synced 2026-01-27 17:22:53 +03:00
* update
* update
* update
* update
* update
* merge main
* Revert "merge main"
This reverts commit 65efbcead5.
368 lines
13 KiB
Python
368 lines
13 KiB
Python
# Copyright 2025 The HuggingFace Team.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
|
|
import tempfile
|
|
import unittest
|
|
|
|
import numpy as np
|
|
import torch
|
|
from transformers import AutoTokenizer, T5EncoderModel
|
|
|
|
from diffusers import AutoencoderKLWan, UniPCMultistepScheduler, WanPipeline, WanTransformer3DModel
|
|
|
|
from ...testing_utils import (
|
|
enable_full_determinism,
|
|
torch_device,
|
|
)
|
|
from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_IMAGE_PARAMS, TEXT_TO_IMAGE_PARAMS
|
|
from ..test_pipelines_common import PipelineTesterMixin
|
|
|
|
|
|
enable_full_determinism()
|
|
|
|
|
|
class Wan22PipelineFastTests(PipelineTesterMixin, unittest.TestCase):
|
|
pipeline_class = WanPipeline
|
|
params = TEXT_TO_IMAGE_PARAMS - {"cross_attention_kwargs"}
|
|
batch_params = TEXT_TO_IMAGE_BATCH_PARAMS
|
|
image_params = TEXT_TO_IMAGE_IMAGE_PARAMS
|
|
image_latents_params = TEXT_TO_IMAGE_IMAGE_PARAMS
|
|
required_optional_params = frozenset(
|
|
[
|
|
"num_inference_steps",
|
|
"generator",
|
|
"latents",
|
|
"return_dict",
|
|
"callback_on_step_end",
|
|
"callback_on_step_end_tensor_inputs",
|
|
]
|
|
)
|
|
test_xformers_attention = False
|
|
supports_dduf = False
|
|
|
|
def get_dummy_components(self):
|
|
torch.manual_seed(0)
|
|
vae = AutoencoderKLWan(
|
|
base_dim=3,
|
|
z_dim=16,
|
|
dim_mult=[1, 1, 1, 1],
|
|
num_res_blocks=1,
|
|
temperal_downsample=[False, True, True],
|
|
)
|
|
|
|
torch.manual_seed(0)
|
|
scheduler = UniPCMultistepScheduler(prediction_type="flow_prediction", use_flow_sigmas=True, flow_shift=3.0)
|
|
text_encoder = T5EncoderModel.from_pretrained("hf-internal-testing/tiny-random-t5")
|
|
tokenizer = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-t5")
|
|
|
|
torch.manual_seed(0)
|
|
transformer = WanTransformer3DModel(
|
|
patch_size=(1, 2, 2),
|
|
num_attention_heads=2,
|
|
attention_head_dim=12,
|
|
in_channels=16,
|
|
out_channels=16,
|
|
text_dim=32,
|
|
freq_dim=256,
|
|
ffn_dim=32,
|
|
num_layers=2,
|
|
cross_attn_norm=True,
|
|
qk_norm="rms_norm_across_heads",
|
|
rope_max_seq_len=32,
|
|
)
|
|
|
|
torch.manual_seed(0)
|
|
transformer_2 = WanTransformer3DModel(
|
|
patch_size=(1, 2, 2),
|
|
num_attention_heads=2,
|
|
attention_head_dim=12,
|
|
in_channels=16,
|
|
out_channels=16,
|
|
text_dim=32,
|
|
freq_dim=256,
|
|
ffn_dim=32,
|
|
num_layers=2,
|
|
cross_attn_norm=True,
|
|
qk_norm="rms_norm_across_heads",
|
|
rope_max_seq_len=32,
|
|
)
|
|
|
|
components = {
|
|
"transformer": transformer,
|
|
"vae": vae,
|
|
"scheduler": scheduler,
|
|
"text_encoder": text_encoder,
|
|
"tokenizer": tokenizer,
|
|
"transformer_2": transformer_2,
|
|
"boundary_ratio": 0.875,
|
|
}
|
|
return components
|
|
|
|
def get_dummy_inputs(self, device, seed=0):
|
|
if str(device).startswith("mps"):
|
|
generator = torch.manual_seed(seed)
|
|
else:
|
|
generator = torch.Generator(device=device).manual_seed(seed)
|
|
inputs = {
|
|
"prompt": "dance monkey",
|
|
"negative_prompt": "negative",
|
|
"generator": generator,
|
|
"num_inference_steps": 2,
|
|
"guidance_scale": 6.0,
|
|
"height": 16,
|
|
"width": 16,
|
|
"num_frames": 9,
|
|
"max_sequence_length": 16,
|
|
"output_type": "pt",
|
|
}
|
|
return inputs
|
|
|
|
def test_inference(self):
|
|
device = "cpu"
|
|
|
|
components = self.get_dummy_components()
|
|
pipe = self.pipeline_class(
|
|
**components,
|
|
)
|
|
pipe.to(device)
|
|
pipe.set_progress_bar_config(disable=None)
|
|
|
|
inputs = self.get_dummy_inputs(device)
|
|
video = pipe(**inputs).frames
|
|
generated_video = video[0]
|
|
self.assertEqual(generated_video.shape, (9, 3, 16, 16))
|
|
|
|
# fmt: off
|
|
expected_slice = torch.tensor([0.4525, 0.452, 0.4485, 0.4534, 0.4524, 0.4529, 0.454, 0.453, 0.5127, 0.5326, 0.5204, 0.5253, 0.5439, 0.5424, 0.5133, 0.5078])
|
|
# fmt: on
|
|
|
|
generated_slice = generated_video.flatten()
|
|
generated_slice = torch.cat([generated_slice[:8], generated_slice[-8:]])
|
|
self.assertTrue(torch.allclose(generated_slice, expected_slice, atol=1e-3))
|
|
|
|
@unittest.skip("Test not supported")
|
|
def test_attention_slicing_forward_pass(self):
|
|
pass
|
|
|
|
def test_save_load_optional_components(self, expected_max_difference=1e-4):
|
|
optional_component = "transformer"
|
|
|
|
components = self.get_dummy_components()
|
|
components[optional_component] = None
|
|
components["boundary_ratio"] = 1.0 # for wan 2.2 14B, transformer is not used when boundary_ratio is 1.0
|
|
|
|
pipe = self.pipeline_class(**components)
|
|
for component in pipe.components.values():
|
|
if hasattr(component, "set_default_attn_processor"):
|
|
component.set_default_attn_processor()
|
|
pipe.to(torch_device)
|
|
pipe.set_progress_bar_config(disable=None)
|
|
|
|
generator_device = "cpu"
|
|
inputs = self.get_dummy_inputs(generator_device)
|
|
torch.manual_seed(0)
|
|
output = pipe(**inputs)[0]
|
|
|
|
with tempfile.TemporaryDirectory() as tmpdir:
|
|
pipe.save_pretrained(tmpdir, safe_serialization=False)
|
|
pipe_loaded = self.pipeline_class.from_pretrained(tmpdir)
|
|
for component in pipe_loaded.components.values():
|
|
if hasattr(component, "set_default_attn_processor"):
|
|
component.set_default_attn_processor()
|
|
pipe_loaded.to(torch_device)
|
|
pipe_loaded.set_progress_bar_config(disable=None)
|
|
|
|
self.assertTrue(
|
|
getattr(pipe_loaded, "transformer") is None,
|
|
"`transformer` did not stay set to None after loading.",
|
|
)
|
|
|
|
inputs = self.get_dummy_inputs(generator_device)
|
|
torch.manual_seed(0)
|
|
output_loaded = pipe_loaded(**inputs)[0]
|
|
|
|
max_diff = np.abs(output.detach().cpu().numpy() - output_loaded.detach().cpu().numpy()).max()
|
|
self.assertLess(max_diff, expected_max_difference)
|
|
|
|
|
|
class Wan225BPipelineFastTests(PipelineTesterMixin, unittest.TestCase):
|
|
pipeline_class = WanPipeline
|
|
params = TEXT_TO_IMAGE_PARAMS - {"cross_attention_kwargs"}
|
|
batch_params = TEXT_TO_IMAGE_BATCH_PARAMS
|
|
image_params = TEXT_TO_IMAGE_IMAGE_PARAMS
|
|
image_latents_params = TEXT_TO_IMAGE_IMAGE_PARAMS
|
|
required_optional_params = frozenset(
|
|
[
|
|
"num_inference_steps",
|
|
"generator",
|
|
"latents",
|
|
"return_dict",
|
|
"callback_on_step_end",
|
|
"callback_on_step_end_tensor_inputs",
|
|
]
|
|
)
|
|
test_xformers_attention = False
|
|
supports_dduf = False
|
|
|
|
def get_dummy_components(self):
|
|
torch.manual_seed(0)
|
|
vae = AutoencoderKLWan(
|
|
base_dim=3,
|
|
z_dim=48,
|
|
in_channels=12,
|
|
out_channels=12,
|
|
is_residual=True,
|
|
patch_size=2,
|
|
latents_mean=[0.0] * 48,
|
|
latents_std=[1.0] * 48,
|
|
dim_mult=[1, 1, 1, 1],
|
|
num_res_blocks=1,
|
|
scale_factor_spatial=16,
|
|
scale_factor_temporal=4,
|
|
temperal_downsample=[False, True, True],
|
|
)
|
|
|
|
torch.manual_seed(0)
|
|
scheduler = UniPCMultistepScheduler(prediction_type="flow_prediction", use_flow_sigmas=True, flow_shift=3.0)
|
|
text_encoder = T5EncoderModel.from_pretrained("hf-internal-testing/tiny-random-t5")
|
|
tokenizer = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-t5")
|
|
|
|
torch.manual_seed(0)
|
|
transformer = WanTransformer3DModel(
|
|
patch_size=(1, 2, 2),
|
|
num_attention_heads=2,
|
|
attention_head_dim=12,
|
|
in_channels=48,
|
|
out_channels=48,
|
|
text_dim=32,
|
|
freq_dim=256,
|
|
ffn_dim=32,
|
|
num_layers=2,
|
|
cross_attn_norm=True,
|
|
qk_norm="rms_norm_across_heads",
|
|
rope_max_seq_len=32,
|
|
)
|
|
|
|
components = {
|
|
"transformer": transformer,
|
|
"vae": vae,
|
|
"scheduler": scheduler,
|
|
"text_encoder": text_encoder,
|
|
"tokenizer": tokenizer,
|
|
"transformer_2": None,
|
|
"boundary_ratio": None,
|
|
"expand_timesteps": True,
|
|
}
|
|
return components
|
|
|
|
def get_dummy_inputs(self, device, seed=0):
|
|
if str(device).startswith("mps"):
|
|
generator = torch.manual_seed(seed)
|
|
else:
|
|
generator = torch.Generator(device=device).manual_seed(seed)
|
|
inputs = {
|
|
"prompt": "dance monkey",
|
|
"negative_prompt": "negative", # TODO
|
|
"generator": generator,
|
|
"num_inference_steps": 2,
|
|
"guidance_scale": 6.0,
|
|
"height": 32,
|
|
"width": 32,
|
|
"num_frames": 9,
|
|
"max_sequence_length": 16,
|
|
"output_type": "pt",
|
|
}
|
|
return inputs
|
|
|
|
def test_inference(self):
|
|
device = "cpu"
|
|
|
|
components = self.get_dummy_components()
|
|
pipe = self.pipeline_class(
|
|
**components,
|
|
)
|
|
pipe.to(device)
|
|
pipe.set_progress_bar_config(disable=None)
|
|
|
|
inputs = self.get_dummy_inputs(device)
|
|
video = pipe(**inputs).frames
|
|
generated_video = video[0]
|
|
self.assertEqual(generated_video.shape, (9, 3, 32, 32))
|
|
|
|
# fmt: off
|
|
expected_slice = torch.tensor([[[0.4814, 0.4298, 0.5094, 0.4289, 0.5061, 0.4301, 0.5043, 0.4284, 0.5375,
|
|
0.5965, 0.5527, 0.6014, 0.5228, 0.6076, 0.6644, 0.5651]]])
|
|
# fmt: on
|
|
|
|
generated_slice = generated_video.flatten()
|
|
generated_slice = torch.cat([generated_slice[:8], generated_slice[-8:]])
|
|
self.assertTrue(
|
|
torch.allclose(generated_slice, expected_slice, atol=1e-3),
|
|
f"generated_slice: {generated_slice}, expected_slice: {expected_slice}",
|
|
)
|
|
|
|
@unittest.skip("Test not supported")
|
|
def test_attention_slicing_forward_pass(self):
|
|
pass
|
|
|
|
def test_components_function(self):
|
|
init_components = self.get_dummy_components()
|
|
init_components.pop("boundary_ratio")
|
|
init_components.pop("expand_timesteps")
|
|
pipe = self.pipeline_class(**init_components)
|
|
|
|
self.assertTrue(hasattr(pipe, "components"))
|
|
self.assertTrue(set(pipe.components.keys()) == set(init_components.keys()))
|
|
|
|
def test_save_load_optional_components(self, expected_max_difference=1e-4):
|
|
optional_component = "transformer_2"
|
|
|
|
components = self.get_dummy_components()
|
|
components[optional_component] = None
|
|
pipe = self.pipeline_class(**components)
|
|
for component in pipe.components.values():
|
|
if hasattr(component, "set_default_attn_processor"):
|
|
component.set_default_attn_processor()
|
|
pipe.to(torch_device)
|
|
pipe.set_progress_bar_config(disable=None)
|
|
|
|
generator_device = "cpu"
|
|
inputs = self.get_dummy_inputs(generator_device)
|
|
torch.manual_seed(0)
|
|
output = pipe(**inputs)[0]
|
|
|
|
with tempfile.TemporaryDirectory() as tmpdir:
|
|
pipe.save_pretrained(tmpdir, safe_serialization=False)
|
|
pipe_loaded = self.pipeline_class.from_pretrained(tmpdir)
|
|
for component in pipe_loaded.components.values():
|
|
if hasattr(component, "set_default_attn_processor"):
|
|
component.set_default_attn_processor()
|
|
pipe_loaded.to(torch_device)
|
|
pipe_loaded.set_progress_bar_config(disable=None)
|
|
|
|
self.assertTrue(
|
|
getattr(pipe_loaded, optional_component) is None,
|
|
f"`{optional_component}` did not stay set to None after loading.",
|
|
)
|
|
|
|
inputs = self.get_dummy_inputs(generator_device)
|
|
torch.manual_seed(0)
|
|
output_loaded = pipe_loaded(**inputs)[0]
|
|
|
|
max_diff = np.abs(output.detach().cpu().numpy() - output_loaded.detach().cpu().numpy()).max()
|
|
self.assertLess(max_diff, expected_max_difference)
|
|
|
|
def test_inference_batch_single_identical(self):
|
|
self._test_inference_batch_single_identical(expected_max_diff=2e-3)
|