mirror of
https://github.com/huggingface/diffusers.git
synced 2026-01-27 17:22:53 +03:00
* update
* update
* update
* update
* update
* merge main
* Revert "merge main"
This reverts commit 65efbcead5.
232 lines
8.6 KiB
Python
232 lines
8.6 KiB
Python
# coding=utf-8
|
|
# Copyright 2022 HuggingFace Inc.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
|
|
import random
|
|
import unittest
|
|
|
|
import numpy as np
|
|
|
|
from diffusers import (
|
|
DPMSolverMultistepScheduler,
|
|
EulerAncestralDiscreteScheduler,
|
|
EulerDiscreteScheduler,
|
|
LMSDiscreteScheduler,
|
|
OnnxStableDiffusionUpscalePipeline,
|
|
PNDMScheduler,
|
|
)
|
|
|
|
from ...testing_utils import (
|
|
floats_tensor,
|
|
is_onnx_available,
|
|
load_image,
|
|
nightly,
|
|
require_onnxruntime,
|
|
require_torch_gpu,
|
|
)
|
|
from ..test_pipelines_onnx_common import OnnxPipelineTesterMixin
|
|
|
|
|
|
if is_onnx_available():
|
|
import onnxruntime as ort
|
|
|
|
|
|
# TODO: (Dhruv) Update hub_checkpoint repo_id
|
|
@unittest.skip(
|
|
"There is a potential backdoor vulnerability in the hub_checkpoint. Skip running this test until resolved"
|
|
)
|
|
class OnnxStableDiffusionUpscalePipelineFastTests(OnnxPipelineTesterMixin, unittest.TestCase):
|
|
# TODO: is there an appropriate internal test set?
|
|
hub_checkpoint = "ssube/stable-diffusion-x4-upscaler-onnx"
|
|
|
|
def get_dummy_inputs(self, seed=0):
|
|
image = floats_tensor((1, 3, 128, 128), rng=random.Random(seed))
|
|
generator = np.random.RandomState(seed)
|
|
inputs = {
|
|
"prompt": "A painting of a squirrel eating a burger",
|
|
"image": image,
|
|
"generator": generator,
|
|
"num_inference_steps": 3,
|
|
"guidance_scale": 7.5,
|
|
"output_type": "np",
|
|
}
|
|
return inputs
|
|
|
|
def test_pipeline_default_ddpm(self):
|
|
pipe = OnnxStableDiffusionUpscalePipeline.from_pretrained(self.hub_checkpoint, provider="CPUExecutionProvider")
|
|
pipe.set_progress_bar_config(disable=None)
|
|
|
|
inputs = self.get_dummy_inputs()
|
|
image = pipe(**inputs).images
|
|
image_slice = image[0, -3:, -3:, -1].flatten()
|
|
|
|
# started as 128, should now be 512
|
|
assert image.shape == (1, 512, 512, 3)
|
|
expected_slice = np.array([0.6957, 0.7002, 0.7186, 0.6881, 0.6693, 0.6910, 0.7445, 0.7274, 0.7056])
|
|
assert np.abs(image_slice - expected_slice).max() < 1e-1
|
|
|
|
def test_pipeline_pndm(self):
|
|
pipe = OnnxStableDiffusionUpscalePipeline.from_pretrained(self.hub_checkpoint, provider="CPUExecutionProvider")
|
|
pipe.scheduler = PNDMScheduler.from_config(pipe.scheduler.config, skip_prk_steps=True)
|
|
pipe.set_progress_bar_config(disable=None)
|
|
|
|
inputs = self.get_dummy_inputs()
|
|
image = pipe(**inputs).images
|
|
image_slice = image[0, -3:, -3:, -1]
|
|
|
|
assert image.shape == (1, 512, 512, 3)
|
|
expected_slice = np.array([0.7349, 0.7347, 0.7034, 0.7696, 0.7876, 0.7597, 0.7916, 0.8085, 0.8036])
|
|
assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-1
|
|
|
|
def test_pipeline_dpm_multistep(self):
|
|
pipe = OnnxStableDiffusionUpscalePipeline.from_pretrained(self.hub_checkpoint, provider="CPUExecutionProvider")
|
|
pipe.scheduler = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config)
|
|
pipe.set_progress_bar_config(disable=None)
|
|
|
|
inputs = self.get_dummy_inputs()
|
|
image = pipe(**inputs).images
|
|
image_slice = image[0, -3:, -3:, -1]
|
|
|
|
assert image.shape == (1, 512, 512, 3)
|
|
expected_slice = np.array(
|
|
[0.7659278, 0.76437664, 0.75579107, 0.7691116, 0.77666986, 0.7727672, 0.7758664, 0.7812226, 0.76942515]
|
|
)
|
|
|
|
assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-1
|
|
|
|
def test_pipeline_euler(self):
|
|
pipe = OnnxStableDiffusionUpscalePipeline.from_pretrained(self.hub_checkpoint, provider="CPUExecutionProvider")
|
|
pipe.scheduler = EulerDiscreteScheduler.from_config(pipe.scheduler.config)
|
|
pipe.set_progress_bar_config(disable=None)
|
|
|
|
inputs = self.get_dummy_inputs()
|
|
image = pipe(**inputs).images
|
|
image_slice = image[0, -3:, -3:, -1]
|
|
|
|
assert image.shape == (1, 512, 512, 3)
|
|
expected_slice = np.array(
|
|
[0.6974782, 0.68902093, 0.70135885, 0.7583618, 0.7804545, 0.7854912, 0.78667426, 0.78743863, 0.78070223]
|
|
)
|
|
assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-1
|
|
|
|
def test_pipeline_euler_ancestral(self):
|
|
pipe = OnnxStableDiffusionUpscalePipeline.from_pretrained(self.hub_checkpoint, provider="CPUExecutionProvider")
|
|
pipe.scheduler = EulerAncestralDiscreteScheduler.from_config(pipe.scheduler.config)
|
|
pipe.set_progress_bar_config(disable=None)
|
|
|
|
inputs = self.get_dummy_inputs()
|
|
image = pipe(**inputs).images
|
|
image_slice = image[0, -3:, -3:, -1]
|
|
|
|
assert image.shape == (1, 512, 512, 3)
|
|
expected_slice = np.array(
|
|
[0.77424496, 0.773601, 0.7645288, 0.7769598, 0.7772739, 0.7738688, 0.78187233, 0.77879584, 0.767043]
|
|
)
|
|
|
|
assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-1
|
|
|
|
|
|
@nightly
|
|
@require_onnxruntime
|
|
@require_torch_gpu
|
|
class OnnxStableDiffusionUpscalePipelineIntegrationTests(unittest.TestCase):
|
|
@property
|
|
def gpu_provider(self):
|
|
return (
|
|
"CUDAExecutionProvider",
|
|
{
|
|
"gpu_mem_limit": "15000000000", # 15GB
|
|
"arena_extend_strategy": "kSameAsRequested",
|
|
},
|
|
)
|
|
|
|
@property
|
|
def gpu_options(self):
|
|
options = ort.SessionOptions()
|
|
options.enable_mem_pattern = False
|
|
return options
|
|
|
|
def test_inference_default_ddpm(self):
|
|
init_image = load_image(
|
|
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main"
|
|
"/img2img/sketch-mountains-input.jpg"
|
|
)
|
|
init_image = init_image.resize((128, 128))
|
|
# using the PNDM scheduler by default
|
|
pipe = OnnxStableDiffusionUpscalePipeline.from_pretrained(
|
|
"ssube/stable-diffusion-x4-upscaler-onnx",
|
|
provider=self.gpu_provider,
|
|
sess_options=self.gpu_options,
|
|
)
|
|
pipe.set_progress_bar_config(disable=None)
|
|
|
|
prompt = "A fantasy landscape, trending on artstation"
|
|
|
|
generator = np.random.RandomState(0)
|
|
output = pipe(
|
|
prompt=prompt,
|
|
image=init_image,
|
|
guidance_scale=7.5,
|
|
num_inference_steps=10,
|
|
generator=generator,
|
|
output_type="np",
|
|
)
|
|
images = output.images
|
|
image_slice = images[0, 255:258, 383:386, -1]
|
|
|
|
assert images.shape == (1, 512, 512, 3)
|
|
expected_slice = np.array([0.4883, 0.4947, 0.4980, 0.4975, 0.4982, 0.4980, 0.5000, 0.5006, 0.4972])
|
|
# TODO: lower the tolerance after finding the cause of onnxruntime reproducibility issues
|
|
|
|
assert np.abs(image_slice.flatten() - expected_slice).max() < 2e-2
|
|
|
|
def test_inference_k_lms(self):
|
|
init_image = load_image(
|
|
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main"
|
|
"/img2img/sketch-mountains-input.jpg"
|
|
)
|
|
init_image = init_image.resize((128, 128))
|
|
lms_scheduler = LMSDiscreteScheduler.from_pretrained(
|
|
"ssube/stable-diffusion-x4-upscaler-onnx", subfolder="scheduler"
|
|
)
|
|
pipe = OnnxStableDiffusionUpscalePipeline.from_pretrained(
|
|
"ssube/stable-diffusion-x4-upscaler-onnx",
|
|
scheduler=lms_scheduler,
|
|
provider=self.gpu_provider,
|
|
sess_options=self.gpu_options,
|
|
)
|
|
pipe.set_progress_bar_config(disable=None)
|
|
|
|
prompt = "A fantasy landscape, trending on artstation"
|
|
|
|
generator = np.random.RandomState(0)
|
|
output = pipe(
|
|
prompt=prompt,
|
|
image=init_image,
|
|
guidance_scale=7.5,
|
|
num_inference_steps=20,
|
|
generator=generator,
|
|
output_type="np",
|
|
)
|
|
images = output.images
|
|
image_slice = images[0, 255:258, 383:386, -1]
|
|
|
|
assert images.shape == (1, 512, 512, 3)
|
|
expected_slice = np.array(
|
|
[0.50173753, 0.50223356, 0.502039, 0.50233036, 0.5023725, 0.5022601, 0.5018758, 0.50234085, 0.50241566]
|
|
)
|
|
# TODO: lower the tolerance after finding the cause of onnxruntime reproducibility issues
|
|
|
|
assert np.abs(image_slice.flatten() - expected_slice).max() < 2e-2
|