mirror of
https://github.com/huggingface/diffusers.git
synced 2026-01-27 17:22:53 +03:00
* update
* update
* update
* update
* update
* merge main
* Revert "merge main"
This reverts commit 65efbcead5.
154 lines
5.1 KiB
Python
154 lines
5.1 KiB
Python
# Copyright 2025 HuggingFace Inc.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
|
|
import unittest
|
|
|
|
import torch
|
|
|
|
from diffusers import CosmosTransformer3DModel
|
|
|
|
from ...testing_utils import enable_full_determinism, torch_device
|
|
from ..test_modeling_common import ModelTesterMixin
|
|
|
|
|
|
enable_full_determinism()
|
|
|
|
|
|
class CosmosTransformer3DModelTests(ModelTesterMixin, unittest.TestCase):
|
|
model_class = CosmosTransformer3DModel
|
|
main_input_name = "hidden_states"
|
|
uses_custom_attn_processor = True
|
|
|
|
@property
|
|
def dummy_input(self):
|
|
batch_size = 1
|
|
num_channels = 4
|
|
num_frames = 1
|
|
height = 16
|
|
width = 16
|
|
text_embed_dim = 16
|
|
sequence_length = 12
|
|
fps = 30
|
|
|
|
hidden_states = torch.randn((batch_size, num_channels, num_frames, height, width)).to(torch_device)
|
|
timestep = torch.randint(0, 1000, size=(batch_size,)).to(torch_device)
|
|
encoder_hidden_states = torch.randn((batch_size, sequence_length, text_embed_dim)).to(torch_device)
|
|
attention_mask = torch.ones((batch_size, sequence_length)).to(torch_device)
|
|
padding_mask = torch.zeros(batch_size, 1, height, width).to(torch_device)
|
|
|
|
return {
|
|
"hidden_states": hidden_states,
|
|
"timestep": timestep,
|
|
"encoder_hidden_states": encoder_hidden_states,
|
|
"attention_mask": attention_mask,
|
|
"fps": fps,
|
|
"padding_mask": padding_mask,
|
|
}
|
|
|
|
@property
|
|
def input_shape(self):
|
|
return (4, 1, 16, 16)
|
|
|
|
@property
|
|
def output_shape(self):
|
|
return (4, 1, 16, 16)
|
|
|
|
def prepare_init_args_and_inputs_for_common(self):
|
|
init_dict = {
|
|
"in_channels": 4,
|
|
"out_channels": 4,
|
|
"num_attention_heads": 2,
|
|
"attention_head_dim": 12,
|
|
"num_layers": 2,
|
|
"mlp_ratio": 2,
|
|
"text_embed_dim": 16,
|
|
"adaln_lora_dim": 4,
|
|
"max_size": (4, 32, 32),
|
|
"patch_size": (1, 2, 2),
|
|
"rope_scale": (2.0, 1.0, 1.0),
|
|
"concat_padding_mask": True,
|
|
"extra_pos_embed_type": "learnable",
|
|
}
|
|
inputs_dict = self.dummy_input
|
|
return init_dict, inputs_dict
|
|
|
|
def test_gradient_checkpointing_is_applied(self):
|
|
expected_set = {"CosmosTransformer3DModel"}
|
|
super().test_gradient_checkpointing_is_applied(expected_set=expected_set)
|
|
|
|
|
|
class CosmosTransformer3DModelVideoToWorldTests(ModelTesterMixin, unittest.TestCase):
|
|
model_class = CosmosTransformer3DModel
|
|
main_input_name = "hidden_states"
|
|
uses_custom_attn_processor = True
|
|
|
|
@property
|
|
def dummy_input(self):
|
|
batch_size = 1
|
|
num_channels = 4
|
|
num_frames = 1
|
|
height = 16
|
|
width = 16
|
|
text_embed_dim = 16
|
|
sequence_length = 12
|
|
fps = 30
|
|
|
|
hidden_states = torch.randn((batch_size, num_channels, num_frames, height, width)).to(torch_device)
|
|
timestep = torch.randint(0, 1000, size=(batch_size,)).to(torch_device)
|
|
encoder_hidden_states = torch.randn((batch_size, sequence_length, text_embed_dim)).to(torch_device)
|
|
attention_mask = torch.ones((batch_size, sequence_length)).to(torch_device)
|
|
condition_mask = torch.ones(batch_size, 1, num_frames, height, width).to(torch_device)
|
|
padding_mask = torch.zeros(batch_size, 1, height, width).to(torch_device)
|
|
|
|
return {
|
|
"hidden_states": hidden_states,
|
|
"timestep": timestep,
|
|
"encoder_hidden_states": encoder_hidden_states,
|
|
"attention_mask": attention_mask,
|
|
"fps": fps,
|
|
"condition_mask": condition_mask,
|
|
"padding_mask": padding_mask,
|
|
}
|
|
|
|
@property
|
|
def input_shape(self):
|
|
return (4, 1, 16, 16)
|
|
|
|
@property
|
|
def output_shape(self):
|
|
return (4, 1, 16, 16)
|
|
|
|
def prepare_init_args_and_inputs_for_common(self):
|
|
init_dict = {
|
|
"in_channels": 4 + 1,
|
|
"out_channels": 4,
|
|
"num_attention_heads": 2,
|
|
"attention_head_dim": 12,
|
|
"num_layers": 2,
|
|
"mlp_ratio": 2,
|
|
"text_embed_dim": 16,
|
|
"adaln_lora_dim": 4,
|
|
"max_size": (4, 32, 32),
|
|
"patch_size": (1, 2, 2),
|
|
"rope_scale": (2.0, 1.0, 1.0),
|
|
"concat_padding_mask": True,
|
|
"extra_pos_embed_type": "learnable",
|
|
}
|
|
inputs_dict = self.dummy_input
|
|
return init_dict, inputs_dict
|
|
|
|
def test_gradient_checkpointing_is_applied(self):
|
|
expected_set = {"CosmosTransformer3DModel"}
|
|
super().test_gradient_checkpointing_is_applied(expected_set=expected_set)
|