mirror of
https://github.com/huggingface/diffusers.git
synced 2026-01-27 17:22:53 +03:00
* update
* update
* update
* update
* update
* merge main
* Revert "merge main"
This reverts commit 65efbcead5.
103 lines
3.5 KiB
Python
103 lines
3.5 KiB
Python
# coding=utf-8
|
|
# Copyright 2025 HuggingFace Inc.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
|
|
import unittest
|
|
|
|
import torch
|
|
|
|
from diffusers import DiTTransformer2DModel, Transformer2DModel
|
|
|
|
from ...testing_utils import (
|
|
enable_full_determinism,
|
|
floats_tensor,
|
|
slow,
|
|
torch_device,
|
|
)
|
|
from ..test_modeling_common import ModelTesterMixin
|
|
|
|
|
|
enable_full_determinism()
|
|
|
|
|
|
class DiTTransformer2DModelTests(ModelTesterMixin, unittest.TestCase):
|
|
model_class = DiTTransformer2DModel
|
|
main_input_name = "hidden_states"
|
|
|
|
@property
|
|
def dummy_input(self):
|
|
batch_size = 4
|
|
in_channels = 4
|
|
sample_size = 8
|
|
scheduler_num_train_steps = 1000
|
|
num_class_labels = 4
|
|
|
|
hidden_states = floats_tensor((batch_size, in_channels, sample_size, sample_size)).to(torch_device)
|
|
timesteps = torch.randint(0, scheduler_num_train_steps, size=(batch_size,)).to(torch_device)
|
|
class_label_ids = torch.randint(0, num_class_labels, size=(batch_size,)).to(torch_device)
|
|
|
|
return {"hidden_states": hidden_states, "timestep": timesteps, "class_labels": class_label_ids}
|
|
|
|
@property
|
|
def input_shape(self):
|
|
return (4, 8, 8)
|
|
|
|
@property
|
|
def output_shape(self):
|
|
return (8, 8, 8)
|
|
|
|
def prepare_init_args_and_inputs_for_common(self):
|
|
init_dict = {
|
|
"in_channels": 4,
|
|
"out_channels": 8,
|
|
"activation_fn": "gelu-approximate",
|
|
"num_attention_heads": 2,
|
|
"attention_head_dim": 4,
|
|
"attention_bias": True,
|
|
"num_layers": 1,
|
|
"norm_type": "ada_norm_zero",
|
|
"num_embeds_ada_norm": 8,
|
|
"patch_size": 2,
|
|
"sample_size": 8,
|
|
}
|
|
inputs_dict = self.dummy_input
|
|
return init_dict, inputs_dict
|
|
|
|
def test_output(self):
|
|
super().test_output(
|
|
expected_output_shape=(self.dummy_input[self.main_input_name].shape[0],) + self.output_shape
|
|
)
|
|
|
|
def test_correct_class_remapping_from_dict_config(self):
|
|
init_dict, _ = self.prepare_init_args_and_inputs_for_common()
|
|
model = Transformer2DModel.from_config(init_dict)
|
|
assert isinstance(model, DiTTransformer2DModel)
|
|
|
|
def test_gradient_checkpointing_is_applied(self):
|
|
expected_set = {"DiTTransformer2DModel"}
|
|
super().test_gradient_checkpointing_is_applied(expected_set=expected_set)
|
|
|
|
def test_effective_gradient_checkpointing(self):
|
|
super().test_effective_gradient_checkpointing(loss_tolerance=1e-4)
|
|
|
|
def test_correct_class_remapping_from_pretrained_config(self):
|
|
config = DiTTransformer2DModel.load_config("facebook/DiT-XL-2-256", subfolder="transformer")
|
|
model = Transformer2DModel.from_config(config)
|
|
assert isinstance(model, DiTTransformer2DModel)
|
|
|
|
@slow
|
|
def test_correct_class_remapping(self):
|
|
model = Transformer2DModel.from_pretrained("facebook/DiT-XL-2-256", subfolder="transformer")
|
|
assert isinstance(model, DiTTransformer2DModel)
|