mirror of
https://github.com/huggingface/diffusers.git
synced 2026-01-27 17:22:53 +03:00
98 lines
3.1 KiB
Python
98 lines
3.1 KiB
Python
# coding=utf-8
|
|
# Copyright 2025 HuggingFace Inc.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
|
|
import unittest
|
|
|
|
from diffusers import AutoencoderKLMagvit
|
|
|
|
from ...testing_utils import enable_full_determinism, floats_tensor, torch_device
|
|
from ..test_modeling_common import ModelTesterMixin
|
|
from .testing_utils import AutoencoderTesterMixin
|
|
|
|
|
|
enable_full_determinism()
|
|
|
|
|
|
class AutoencoderKLMagvitTests(ModelTesterMixin, AutoencoderTesterMixin, unittest.TestCase):
|
|
model_class = AutoencoderKLMagvit
|
|
main_input_name = "sample"
|
|
base_precision = 1e-2
|
|
|
|
def get_autoencoder_kl_magvit_config(self):
|
|
return {
|
|
"in_channels": 3,
|
|
"latent_channels": 4,
|
|
"out_channels": 3,
|
|
"block_out_channels": [8, 8, 8, 8],
|
|
"down_block_types": [
|
|
"SpatialDownBlock3D",
|
|
"SpatialTemporalDownBlock3D",
|
|
"SpatialTemporalDownBlock3D",
|
|
"SpatialTemporalDownBlock3D",
|
|
],
|
|
"up_block_types": [
|
|
"SpatialUpBlock3D",
|
|
"SpatialTemporalUpBlock3D",
|
|
"SpatialTemporalUpBlock3D",
|
|
"SpatialTemporalUpBlock3D",
|
|
],
|
|
"layers_per_block": 1,
|
|
"norm_num_groups": 8,
|
|
"spatial_group_norm": True,
|
|
}
|
|
|
|
@property
|
|
def dummy_input(self):
|
|
batch_size = 2
|
|
num_frames = 9
|
|
num_channels = 3
|
|
height = 16
|
|
width = 16
|
|
|
|
image = floats_tensor((batch_size, num_channels, num_frames, height, width)).to(torch_device)
|
|
|
|
return {"sample": image}
|
|
|
|
@property
|
|
def input_shape(self):
|
|
return (3, 9, 16, 16)
|
|
|
|
@property
|
|
def output_shape(self):
|
|
return (3, 9, 16, 16)
|
|
|
|
def prepare_init_args_and_inputs_for_common(self):
|
|
init_dict = self.get_autoencoder_kl_magvit_config()
|
|
inputs_dict = self.dummy_input
|
|
return init_dict, inputs_dict
|
|
|
|
def test_gradient_checkpointing_is_applied(self):
|
|
expected_set = {"EasyAnimateEncoder", "EasyAnimateDecoder"}
|
|
super().test_gradient_checkpointing_is_applied(expected_set=expected_set)
|
|
|
|
@unittest.skip("Not quite sure why this test fails. Revisit later.")
|
|
def test_effective_gradient_checkpointing(self):
|
|
pass
|
|
|
|
@unittest.skip("Unsupported test.")
|
|
def test_forward_with_norm_groups(self):
|
|
pass
|
|
|
|
@unittest.skip(
|
|
"Unsupported test. Error: RuntimeError: Sizes of tensors must match except in dimension 0. Expected size 9 but got size 12 for tensor number 1 in the list."
|
|
)
|
|
def test_enable_disable_slicing(self):
|
|
pass
|