1
0
mirror of https://github.com/huggingface/diffusers.git synced 2026-01-27 17:22:53 +03:00
Files
diffusers/tests/lora/test_lora_layers_z_image.py
dg845 f1a93c765f Add Flag to PeftLoraLoaderMixinTests to Enable/Disable Text Encoder LoRA Tests (#12962)
* Improve incorrect LoRA format error message

* Add flag in PeftLoraLoaderMixinTests to disable text encoder LoRA tests

* Apply changes to LTX2LoraTests

* Further improve incorrect LoRA format error msg following review

---------

Co-authored-by: Sayak Paul <spsayakpaul@gmail.com>
2026-01-12 16:01:58 -08:00

268 lines
10 KiB
Python

# coding=utf-8
# Copyright 2025 HuggingFace Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import sys
import unittest
import numpy as np
import torch
from transformers import Qwen2Tokenizer, Qwen3Config, Qwen3Model
from diffusers import AutoencoderKL, FlowMatchEulerDiscreteScheduler, ZImagePipeline, ZImageTransformer2DModel
from ..testing_utils import floats_tensor, is_peft_available, require_peft_backend, skip_mps, torch_device
if is_peft_available():
from peft import LoraConfig
sys.path.append(".")
from .utils import PeftLoraLoaderMixinTests, check_if_lora_correctly_set # noqa: E402
@require_peft_backend
class ZImageLoRATests(unittest.TestCase, PeftLoraLoaderMixinTests):
pipeline_class = ZImagePipeline
scheduler_cls = FlowMatchEulerDiscreteScheduler
scheduler_kwargs = {}
transformer_kwargs = {
"all_patch_size": (2,),
"all_f_patch_size": (1,),
"in_channels": 16,
"dim": 32,
"n_layers": 2,
"n_refiner_layers": 1,
"n_heads": 2,
"n_kv_heads": 2,
"norm_eps": 1e-5,
"qk_norm": True,
"cap_feat_dim": 16,
"rope_theta": 256.0,
"t_scale": 1000.0,
"axes_dims": [8, 4, 4],
"axes_lens": [256, 32, 32],
}
transformer_cls = ZImageTransformer2DModel
vae_kwargs = {
"in_channels": 3,
"out_channels": 3,
"down_block_types": ["DownEncoderBlock2D", "DownEncoderBlock2D"],
"up_block_types": ["UpDecoderBlock2D", "UpDecoderBlock2D"],
"block_out_channels": [32, 64],
"layers_per_block": 1,
"latent_channels": 16,
"norm_num_groups": 32,
"sample_size": 32,
"scaling_factor": 0.3611,
"shift_factor": 0.1159,
}
vae_cls = AutoencoderKL
tokenizer_cls, tokenizer_id = Qwen2Tokenizer, "hf-internal-testing/tiny-random-Qwen2VLForConditionalGeneration"
text_encoder_cls, text_encoder_id = Qwen3Model, None # Will be created inline
denoiser_target_modules = ["to_q", "to_k", "to_v", "to_out.0"]
supports_text_encoder_loras = False
@property
def output_shape(self):
return (1, 32, 32, 3)
def get_dummy_inputs(self, with_generator=True):
batch_size = 1
sequence_length = 10
num_channels = 4
sizes = (32, 32)
generator = torch.manual_seed(0)
noise = floats_tensor((batch_size, num_channels) + sizes)
input_ids = torch.randint(1, sequence_length, size=(batch_size, sequence_length), generator=generator)
pipeline_inputs = {
"prompt": "A painting of a squirrel eating a burger",
"num_inference_steps": 4,
"guidance_scale": 0.0,
"height": 32,
"width": 32,
"max_sequence_length": 16,
"output_type": "np",
}
if with_generator:
pipeline_inputs.update({"generator": generator})
return noise, input_ids, pipeline_inputs
def get_dummy_components(self, scheduler_cls=None, use_dora=False, lora_alpha=None):
# Override to create Qwen3Model inline since it doesn't have a pretrained tiny model
torch.manual_seed(0)
config = Qwen3Config(
hidden_size=16,
intermediate_size=16,
num_hidden_layers=2,
num_attention_heads=2,
num_key_value_heads=2,
vocab_size=151936,
max_position_embeddings=512,
)
text_encoder = Qwen3Model(config)
tokenizer = Qwen2Tokenizer.from_pretrained(self.tokenizer_id)
transformer = self.transformer_cls(**self.transformer_kwargs)
# `x_pad_token` and `cap_pad_token` are initialized with `torch.empty`.
# This can cause NaN data values in our testing environment. Fixating them
# helps prevent that issue.
with torch.no_grad():
transformer.x_pad_token.copy_(torch.ones_like(transformer.x_pad_token.data))
transformer.cap_pad_token.copy_(torch.ones_like(transformer.cap_pad_token.data))
vae = self.vae_cls(**self.vae_kwargs)
if scheduler_cls is None:
scheduler_cls = self.scheduler_cls
scheduler = scheduler_cls(**self.scheduler_kwargs)
rank = 4
lora_alpha = rank if lora_alpha is None else lora_alpha
text_lora_config = LoraConfig(
r=rank,
lora_alpha=lora_alpha,
target_modules=["q_proj", "k_proj", "v_proj", "o_proj"],
init_lora_weights=False,
use_dora=use_dora,
)
denoiser_lora_config = LoraConfig(
r=rank,
lora_alpha=lora_alpha,
target_modules=self.denoiser_target_modules,
init_lora_weights=False,
use_dora=use_dora,
)
pipeline_components = {
"transformer": transformer,
"vae": vae,
"scheduler": scheduler,
"text_encoder": text_encoder,
"tokenizer": tokenizer,
}
return pipeline_components, text_lora_config, denoiser_lora_config
def test_correct_lora_configs_with_different_ranks(self):
components, _, denoiser_lora_config = self.get_dummy_components()
pipe = self.pipeline_class(**components)
pipe = pipe.to(torch_device)
pipe.set_progress_bar_config(disable=None)
_, _, inputs = self.get_dummy_inputs(with_generator=False)
original_output = pipe(**inputs, generator=torch.manual_seed(0))[0]
pipe.transformer.add_adapter(denoiser_lora_config, "adapter-1")
lora_output_same_rank = pipe(**inputs, generator=torch.manual_seed(0))[0]
pipe.transformer.delete_adapters("adapter-1")
denoiser = pipe.unet if self.unet_kwargs is not None else pipe.transformer
for name, _ in denoiser.named_modules():
if "to_k" in name and "attention" in name and "lora" not in name:
module_name_to_rank_update = name.replace(".base_layer.", ".")
break
# change the rank_pattern
updated_rank = denoiser_lora_config.r * 2
denoiser_lora_config.rank_pattern = {module_name_to_rank_update: updated_rank}
pipe.transformer.add_adapter(denoiser_lora_config, "adapter-1")
updated_rank_pattern = pipe.transformer.peft_config["adapter-1"].rank_pattern
self.assertTrue(updated_rank_pattern == {module_name_to_rank_update: updated_rank})
lora_output_diff_rank = pipe(**inputs, generator=torch.manual_seed(0))[0]
self.assertTrue(not np.allclose(original_output, lora_output_same_rank, atol=1e-3, rtol=1e-3))
self.assertTrue(not np.allclose(lora_output_diff_rank, lora_output_same_rank, atol=1e-3, rtol=1e-3))
pipe.transformer.delete_adapters("adapter-1")
# similarly change the alpha_pattern
updated_alpha = denoiser_lora_config.lora_alpha * 2
denoiser_lora_config.alpha_pattern = {module_name_to_rank_update: updated_alpha}
pipe.transformer.add_adapter(denoiser_lora_config, "adapter-1")
self.assertTrue(
pipe.transformer.peft_config["adapter-1"].alpha_pattern == {module_name_to_rank_update: updated_alpha}
)
lora_output_diff_alpha = pipe(**inputs, generator=torch.manual_seed(0))[0]
self.assertTrue(not np.allclose(original_output, lora_output_diff_alpha, atol=1e-3, rtol=1e-3))
self.assertTrue(not np.allclose(lora_output_diff_alpha, lora_output_same_rank, atol=1e-3, rtol=1e-3))
@skip_mps
def test_lora_fuse_nan(self):
components, _, denoiser_lora_config = self.get_dummy_components()
pipe = self.pipeline_class(**components)
pipe = pipe.to(torch_device)
pipe.set_progress_bar_config(disable=None)
_, _, inputs = self.get_dummy_inputs(with_generator=False)
denoiser = pipe.transformer if self.unet_kwargs is None else pipe.unet
denoiser.add_adapter(denoiser_lora_config, "adapter-1")
self.assertTrue(check_if_lora_correctly_set(denoiser), "Lora not correctly set in denoiser.")
# corrupt one LoRA weight with `inf` values
with torch.no_grad():
possible_tower_names = ["noise_refiner"]
filtered_tower_names = [
tower_name for tower_name in possible_tower_names if hasattr(pipe.transformer, tower_name)
]
for tower_name in filtered_tower_names:
transformer_tower = getattr(pipe.transformer, tower_name)
transformer_tower[0].attention.to_q.lora_A["adapter-1"].weight += float("inf")
# with `safe_fusing=True` we should see an Error
with self.assertRaises(ValueError):
pipe.fuse_lora(components=self.pipeline_class._lora_loadable_modules, safe_fusing=True)
# without we should not see an error, but every image will be black
pipe.fuse_lora(components=self.pipeline_class._lora_loadable_modules, safe_fusing=False)
out = pipe(**inputs)[0]
self.assertTrue(np.isnan(out).all())
def test_lora_scale_kwargs_match_fusion(self):
super().test_lora_scale_kwargs_match_fusion(5e-2, 5e-2)
@unittest.skip("Needs to be debugged.")
def test_set_adapters_match_attention_kwargs(self):
super().test_set_adapters_match_attention_kwargs()
@unittest.skip("Needs to be debugged.")
def test_simple_inference_with_text_denoiser_lora_and_scale(self):
super().test_simple_inference_with_text_denoiser_lora_and_scale()
@unittest.skip("Not supported in ZImage.")
def test_simple_inference_with_text_denoiser_block_scale(self):
pass
@unittest.skip("Not supported in ZImage.")
def test_simple_inference_with_text_denoiser_block_scale_for_all_dict_options(self):
pass
@unittest.skip("Not supported in ZImage.")
def test_modify_padding_mode(self):
pass