mirror of
https://github.com/huggingface/diffusers.git
synced 2026-01-27 17:22:53 +03:00
* update
* update
* update
* update
* update
* merge main
* Revert "merge main"
This reverts commit 65efbcead5.
402 lines
16 KiB
Python
402 lines
16 KiB
Python
#!/usr/bin/env python
|
|
# coding=utf-8
|
|
# Copyright 2025 The HuggingFace Inc. team. All rights reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
|
|
import json
|
|
import logging
|
|
import os
|
|
import shutil
|
|
import sys
|
|
import tempfile
|
|
|
|
import torch
|
|
|
|
from diffusers import VQModel
|
|
|
|
|
|
# Add parent directories to path to import from tests
|
|
sys.path.append("..")
|
|
repo_root = os.path.abspath(os.path.join(os.path.dirname(__file__), "../.."))
|
|
if repo_root not in sys.path:
|
|
sys.path.insert(0, repo_root)
|
|
|
|
from test_examples_utils import ExamplesTestsAccelerate, run_command # noqa: E402
|
|
|
|
from tests.testing_utils import require_timm # noqa
|
|
|
|
|
|
logging.basicConfig(level=logging.DEBUG)
|
|
|
|
logger = logging.getLogger()
|
|
stream_handler = logging.StreamHandler(sys.stdout)
|
|
logger.addHandler(stream_handler)
|
|
|
|
|
|
@require_timm
|
|
class TextToImage(ExamplesTestsAccelerate):
|
|
@property
|
|
def test_vqmodel_config(self):
|
|
return {
|
|
"_class_name": "VQModel",
|
|
"_diffusers_version": "0.17.0.dev0",
|
|
"act_fn": "silu",
|
|
"block_out_channels": [
|
|
32,
|
|
],
|
|
"down_block_types": [
|
|
"DownEncoderBlock2D",
|
|
],
|
|
"in_channels": 3,
|
|
"latent_channels": 4,
|
|
"layers_per_block": 2,
|
|
"norm_num_groups": 32,
|
|
"norm_type": "spatial",
|
|
"num_vq_embeddings": 32,
|
|
"out_channels": 3,
|
|
"sample_size": 32,
|
|
"scaling_factor": 0.18215,
|
|
"up_block_types": [
|
|
"UpDecoderBlock2D",
|
|
],
|
|
"vq_embed_dim": 4,
|
|
}
|
|
|
|
@property
|
|
def test_discriminator_config(self):
|
|
return {
|
|
"_class_name": "Discriminator",
|
|
"_diffusers_version": "0.27.0.dev0",
|
|
"in_channels": 3,
|
|
"cond_channels": 0,
|
|
"hidden_channels": 8,
|
|
"depth": 4,
|
|
}
|
|
|
|
def get_vq_and_discriminator_configs(self, tmpdir):
|
|
vqmodel_config_path = os.path.join(tmpdir, "vqmodel.json")
|
|
discriminator_config_path = os.path.join(tmpdir, "discriminator.json")
|
|
with open(vqmodel_config_path, "w") as fp:
|
|
json.dump(self.test_vqmodel_config, fp)
|
|
with open(discriminator_config_path, "w") as fp:
|
|
json.dump(self.test_discriminator_config, fp)
|
|
return vqmodel_config_path, discriminator_config_path
|
|
|
|
def test_vqmodel(self):
|
|
with tempfile.TemporaryDirectory() as tmpdir:
|
|
vqmodel_config_path, discriminator_config_path = self.get_vq_and_discriminator_configs(tmpdir)
|
|
test_args = f"""
|
|
examples/vqgan/train_vqgan.py
|
|
--dataset_name hf-internal-testing/dummy_image_text_data
|
|
--resolution 32
|
|
--image_column image
|
|
--train_batch_size 1
|
|
--gradient_accumulation_steps 1
|
|
--max_train_steps 2
|
|
--learning_rate 5.0e-04
|
|
--scale_lr
|
|
--lr_scheduler constant
|
|
--lr_warmup_steps 0
|
|
--model_config_name_or_path {vqmodel_config_path}
|
|
--discriminator_config_name_or_path {discriminator_config_path}
|
|
--output_dir {tmpdir}
|
|
""".split()
|
|
|
|
run_command(self._launch_args + test_args)
|
|
# save_pretrained smoke test
|
|
self.assertTrue(
|
|
os.path.isfile(os.path.join(tmpdir, "discriminator", "diffusion_pytorch_model.safetensors"))
|
|
)
|
|
self.assertTrue(os.path.isfile(os.path.join(tmpdir, "vqmodel", "diffusion_pytorch_model.safetensors")))
|
|
|
|
def test_vqmodel_checkpointing(self):
|
|
with tempfile.TemporaryDirectory() as tmpdir:
|
|
vqmodel_config_path, discriminator_config_path = self.get_vq_and_discriminator_configs(tmpdir)
|
|
# Run training script with checkpointing
|
|
# max_train_steps == 4, checkpointing_steps == 2
|
|
# Should create checkpoints at steps 2, 4
|
|
|
|
initial_run_args = f"""
|
|
examples/vqgan/train_vqgan.py
|
|
--dataset_name hf-internal-testing/dummy_image_text_data
|
|
--resolution 32
|
|
--image_column image
|
|
--train_batch_size 1
|
|
--gradient_accumulation_steps 1
|
|
--max_train_steps 4
|
|
--learning_rate 5.0e-04
|
|
--scale_lr
|
|
--lr_scheduler constant
|
|
--lr_warmup_steps 0
|
|
--model_config_name_or_path {vqmodel_config_path}
|
|
--discriminator_config_name_or_path {discriminator_config_path}
|
|
--checkpointing_steps=2
|
|
--output_dir {tmpdir}
|
|
--seed=0
|
|
""".split()
|
|
|
|
run_command(self._launch_args + initial_run_args)
|
|
|
|
# check checkpoint directories exist
|
|
self.assertEqual(
|
|
{x for x in os.listdir(tmpdir) if "checkpoint" in x},
|
|
{"checkpoint-2", "checkpoint-4"},
|
|
)
|
|
|
|
# check can run an intermediate checkpoint
|
|
model = VQModel.from_pretrained(tmpdir, subfolder="checkpoint-2/vqmodel")
|
|
image = torch.randn(1, model.config.in_channels, model.config.sample_size, model.config.sample_size)
|
|
_ = model(image)
|
|
|
|
# Remove checkpoint 2 so that we can check only later checkpoints exist after resuming
|
|
shutil.rmtree(os.path.join(tmpdir, "checkpoint-2"))
|
|
self.assertEqual(
|
|
{x for x in os.listdir(tmpdir) if "checkpoint" in x},
|
|
{"checkpoint-4"},
|
|
)
|
|
|
|
# Run training script for 2 total steps resuming from checkpoint 4
|
|
|
|
resume_run_args = f"""
|
|
examples/vqgan/train_vqgan.py
|
|
--dataset_name hf-internal-testing/dummy_image_text_data
|
|
--resolution 32
|
|
--image_column image
|
|
--train_batch_size 1
|
|
--gradient_accumulation_steps 1
|
|
--max_train_steps 6
|
|
--learning_rate 5.0e-04
|
|
--scale_lr
|
|
--lr_scheduler constant
|
|
--lr_warmup_steps 0
|
|
--model_config_name_or_path {vqmodel_config_path}
|
|
--discriminator_config_name_or_path {discriminator_config_path}
|
|
--checkpointing_steps=1
|
|
--resume_from_checkpoint={os.path.join(tmpdir, "checkpoint-4")}
|
|
--output_dir {tmpdir}
|
|
--seed=0
|
|
""".split()
|
|
|
|
run_command(self._launch_args + resume_run_args)
|
|
|
|
# check can run new fully trained pipeline
|
|
model = VQModel.from_pretrained(tmpdir, subfolder="vqmodel")
|
|
image = torch.randn(1, model.config.in_channels, model.config.sample_size, model.config.sample_size)
|
|
_ = model(image)
|
|
|
|
# no checkpoint-2 -> check old checkpoints do not exist
|
|
# check new checkpoints exist
|
|
# In the current script, checkpointing_steps 1 is equivalent to checkpointing_steps 2 as after the generator gets trained for one step,
|
|
# the discriminator gets trained and loss and saving happens after that. Thus we do not expect to get a checkpoint-5
|
|
self.assertEqual(
|
|
{x for x in os.listdir(tmpdir) if "checkpoint" in x},
|
|
{"checkpoint-4", "checkpoint-6"},
|
|
)
|
|
|
|
def test_vqmodel_checkpointing_use_ema(self):
|
|
with tempfile.TemporaryDirectory() as tmpdir:
|
|
vqmodel_config_path, discriminator_config_path = self.get_vq_and_discriminator_configs(tmpdir)
|
|
# Run training script with checkpointing
|
|
# max_train_steps == 4, checkpointing_steps == 2
|
|
# Should create checkpoints at steps 2, 4
|
|
|
|
initial_run_args = f"""
|
|
examples/vqgan/train_vqgan.py
|
|
--dataset_name hf-internal-testing/dummy_image_text_data
|
|
--resolution 32
|
|
--image_column image
|
|
--train_batch_size 1
|
|
--gradient_accumulation_steps 1
|
|
--max_train_steps 4
|
|
--learning_rate 5.0e-04
|
|
--scale_lr
|
|
--lr_scheduler constant
|
|
--lr_warmup_steps 0
|
|
--model_config_name_or_path {vqmodel_config_path}
|
|
--discriminator_config_name_or_path {discriminator_config_path}
|
|
--checkpointing_steps=2
|
|
--output_dir {tmpdir}
|
|
--use_ema
|
|
--seed=0
|
|
""".split()
|
|
|
|
run_command(self._launch_args + initial_run_args)
|
|
|
|
model = VQModel.from_pretrained(tmpdir, subfolder="vqmodel")
|
|
image = torch.randn(1, model.config.in_channels, model.config.sample_size, model.config.sample_size)
|
|
_ = model(image)
|
|
|
|
# check checkpoint directories exist
|
|
self.assertEqual(
|
|
{x for x in os.listdir(tmpdir) if "checkpoint" in x},
|
|
{"checkpoint-2", "checkpoint-4"},
|
|
)
|
|
|
|
# check can run an intermediate checkpoint
|
|
model = VQModel.from_pretrained(tmpdir, subfolder="checkpoint-2/vqmodel")
|
|
image = torch.randn(1, model.config.in_channels, model.config.sample_size, model.config.sample_size)
|
|
_ = model(image)
|
|
|
|
# Remove checkpoint 2 so that we can check only later checkpoints exist after resuming
|
|
shutil.rmtree(os.path.join(tmpdir, "checkpoint-2"))
|
|
|
|
# Run training script for 2 total steps resuming from checkpoint 4
|
|
|
|
resume_run_args = f"""
|
|
examples/vqgan/train_vqgan.py
|
|
--dataset_name hf-internal-testing/dummy_image_text_data
|
|
--resolution 32
|
|
--image_column image
|
|
--train_batch_size 1
|
|
--gradient_accumulation_steps 1
|
|
--max_train_steps 6
|
|
--learning_rate 5.0e-04
|
|
--scale_lr
|
|
--lr_scheduler constant
|
|
--lr_warmup_steps 0
|
|
--model_config_name_or_path {vqmodel_config_path}
|
|
--discriminator_config_name_or_path {discriminator_config_path}
|
|
--checkpointing_steps=1
|
|
--resume_from_checkpoint={os.path.join(tmpdir, "checkpoint-4")}
|
|
--output_dir {tmpdir}
|
|
--use_ema
|
|
--seed=0
|
|
""".split()
|
|
|
|
run_command(self._launch_args + resume_run_args)
|
|
|
|
# check can run new fully trained pipeline
|
|
model = VQModel.from_pretrained(tmpdir, subfolder="vqmodel")
|
|
image = torch.randn(1, model.config.in_channels, model.config.sample_size, model.config.sample_size)
|
|
_ = model(image)
|
|
|
|
# no checkpoint-2 -> check old checkpoints do not exist
|
|
# check new checkpoints exist
|
|
self.assertEqual(
|
|
{x for x in os.listdir(tmpdir) if "checkpoint" in x},
|
|
{"checkpoint-4", "checkpoint-6"},
|
|
)
|
|
|
|
def test_vqmodel_checkpointing_checkpoints_total_limit(self):
|
|
with tempfile.TemporaryDirectory() as tmpdir:
|
|
vqmodel_config_path, discriminator_config_path = self.get_vq_and_discriminator_configs(tmpdir)
|
|
# Run training script with checkpointing
|
|
# max_train_steps == 6, checkpointing_steps == 2, checkpoints_total_limit == 2
|
|
# Should create checkpoints at steps 2, 4, 6
|
|
# with checkpoint at step 2 deleted
|
|
|
|
initial_run_args = f"""
|
|
examples/vqgan/train_vqgan.py
|
|
--dataset_name hf-internal-testing/dummy_image_text_data
|
|
--resolution 32
|
|
--image_column image
|
|
--train_batch_size 1
|
|
--gradient_accumulation_steps 1
|
|
--max_train_steps 6
|
|
--learning_rate 5.0e-04
|
|
--scale_lr
|
|
--lr_scheduler constant
|
|
--lr_warmup_steps 0
|
|
--model_config_name_or_path {vqmodel_config_path}
|
|
--discriminator_config_name_or_path {discriminator_config_path}
|
|
--output_dir {tmpdir}
|
|
--checkpointing_steps=2
|
|
--checkpoints_total_limit=2
|
|
--seed=0
|
|
""".split()
|
|
|
|
run_command(self._launch_args + initial_run_args)
|
|
|
|
model = VQModel.from_pretrained(tmpdir, subfolder="vqmodel")
|
|
image = torch.randn(1, model.config.in_channels, model.config.sample_size, model.config.sample_size)
|
|
_ = model(image)
|
|
|
|
# check checkpoint directories exist
|
|
# checkpoint-2 should have been deleted
|
|
self.assertEqual({x for x in os.listdir(tmpdir) if "checkpoint" in x}, {"checkpoint-4", "checkpoint-6"})
|
|
|
|
def test_vqmodel_checkpointing_checkpoints_total_limit_removes_multiple_checkpoints(self):
|
|
with tempfile.TemporaryDirectory() as tmpdir:
|
|
vqmodel_config_path, discriminator_config_path = self.get_vq_and_discriminator_configs(tmpdir)
|
|
# Run training script with checkpointing
|
|
# max_train_steps == 4, checkpointing_steps == 2
|
|
# Should create checkpoints at steps 2, 4
|
|
|
|
initial_run_args = f"""
|
|
examples/vqgan/train_vqgan.py
|
|
--dataset_name hf-internal-testing/dummy_image_text_data
|
|
--resolution 32
|
|
--image_column image
|
|
--train_batch_size 1
|
|
--gradient_accumulation_steps 1
|
|
--max_train_steps 4
|
|
--learning_rate 5.0e-04
|
|
--scale_lr
|
|
--lr_scheduler constant
|
|
--lr_warmup_steps 0
|
|
--model_config_name_or_path {vqmodel_config_path}
|
|
--discriminator_config_name_or_path {discriminator_config_path}
|
|
--checkpointing_steps=2
|
|
--output_dir {tmpdir}
|
|
--seed=0
|
|
""".split()
|
|
|
|
run_command(self._launch_args + initial_run_args)
|
|
|
|
model = VQModel.from_pretrained(tmpdir, subfolder="vqmodel")
|
|
image = torch.randn(1, model.config.in_channels, model.config.sample_size, model.config.sample_size)
|
|
_ = model(image)
|
|
|
|
# check checkpoint directories exist
|
|
self.assertEqual(
|
|
{x for x in os.listdir(tmpdir) if "checkpoint" in x},
|
|
{"checkpoint-2", "checkpoint-4"},
|
|
)
|
|
|
|
# resume and we should try to checkpoint at 6, where we'll have to remove
|
|
# checkpoint-2 and checkpoint-4 instead of just a single previous checkpoint
|
|
|
|
resume_run_args = f"""
|
|
examples/vqgan/train_vqgan.py
|
|
--dataset_name hf-internal-testing/dummy_image_text_data
|
|
--resolution 32
|
|
--image_column image
|
|
--train_batch_size 1
|
|
--gradient_accumulation_steps 1
|
|
--max_train_steps 8
|
|
--learning_rate 5.0e-04
|
|
--scale_lr
|
|
--lr_scheduler constant
|
|
--lr_warmup_steps 0
|
|
--model_config_name_or_path {vqmodel_config_path}
|
|
--discriminator_config_name_or_path {discriminator_config_path}
|
|
--output_dir {tmpdir}
|
|
--checkpointing_steps=2
|
|
--resume_from_checkpoint={os.path.join(tmpdir, "checkpoint-4")}
|
|
--checkpoints_total_limit=2
|
|
--seed=0
|
|
""".split()
|
|
|
|
run_command(self._launch_args + resume_run_args)
|
|
|
|
model = VQModel.from_pretrained(tmpdir, subfolder="vqmodel")
|
|
image = torch.randn(1, model.config.in_channels, model.config.sample_size, model.config.sample_size)
|
|
_ = model(image)
|
|
|
|
# check checkpoint directories exist
|
|
self.assertEqual(
|
|
{x for x in os.listdir(tmpdir) if "checkpoint" in x},
|
|
{"checkpoint-6", "checkpoint-8"},
|
|
)
|