mirror of
https://github.com/huggingface/diffusers.git
synced 2026-01-27 17:22:53 +03:00
* find & replace all FloatTensors to Tensor * apply formatting * Update torch.FloatTensor to torch.Tensor in the remaining files * formatting * Fix the rest of the places where FloatTensor is used as well as in documentation * formatting * Update new file from FloatTensor to Tensor
191 lines
8.2 KiB
Python
191 lines
8.2 KiB
Python
# Copyright 2022 The HuggingFace Team. All rights reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
|
|
from typing import List, Optional, Tuple, Union
|
|
|
|
import PIL.Image
|
|
import torch
|
|
from torchvision import transforms
|
|
|
|
from diffusers.pipelines.pipeline_utils import DiffusionPipeline, ImagePipelineOutput
|
|
from diffusers.schedulers import DDIMScheduler
|
|
from diffusers.utils.torch_utils import randn_tensor
|
|
|
|
|
|
trans = transforms.Compose(
|
|
[
|
|
transforms.Resize((256, 256)),
|
|
transforms.ToTensor(),
|
|
transforms.Normalize([0.5], [0.5]),
|
|
]
|
|
)
|
|
|
|
|
|
def preprocess(image):
|
|
if isinstance(image, torch.Tensor):
|
|
return image
|
|
elif isinstance(image, PIL.Image.Image):
|
|
image = [image]
|
|
|
|
image = [trans(img.convert("RGB")) for img in image]
|
|
image = torch.stack(image)
|
|
return image
|
|
|
|
|
|
class DDIMNoiseComparativeAnalysisPipeline(DiffusionPipeline):
|
|
r"""
|
|
This model inherits from [`DiffusionPipeline`]. Check the superclass documentation for the generic methods the
|
|
library implements for all the pipelines (such as downloading or saving, running on a particular device, etc.)
|
|
|
|
Parameters:
|
|
unet ([`UNet2DModel`]): U-Net architecture to denoise the encoded image.
|
|
scheduler ([`SchedulerMixin`]):
|
|
A scheduler to be used in combination with `unet` to denoise the encoded image. Can be one of
|
|
[`DDPMScheduler`], or [`DDIMScheduler`].
|
|
"""
|
|
|
|
def __init__(self, unet, scheduler):
|
|
super().__init__()
|
|
|
|
# make sure scheduler can always be converted to DDIM
|
|
scheduler = DDIMScheduler.from_config(scheduler.config)
|
|
|
|
self.register_modules(unet=unet, scheduler=scheduler)
|
|
|
|
def check_inputs(self, strength):
|
|
if strength < 0 or strength > 1:
|
|
raise ValueError(f"The value of strength should in [0.0, 1.0] but is {strength}")
|
|
|
|
def get_timesteps(self, num_inference_steps, strength, device):
|
|
# get the original timestep using init_timestep
|
|
init_timestep = min(int(num_inference_steps * strength), num_inference_steps)
|
|
|
|
t_start = max(num_inference_steps - init_timestep, 0)
|
|
timesteps = self.scheduler.timesteps[t_start:]
|
|
|
|
return timesteps, num_inference_steps - t_start
|
|
|
|
def prepare_latents(self, image, timestep, batch_size, dtype, device, generator=None):
|
|
if not isinstance(image, (torch.Tensor, PIL.Image.Image, list)):
|
|
raise ValueError(
|
|
f"`image` has to be of type `torch.Tensor`, `PIL.Image.Image` or list but is {type(image)}"
|
|
)
|
|
|
|
init_latents = image.to(device=device, dtype=dtype)
|
|
|
|
if isinstance(generator, list) and len(generator) != batch_size:
|
|
raise ValueError(
|
|
f"You have passed a list of generators of length {len(generator)}, but requested an effective batch"
|
|
f" size of {batch_size}. Make sure the batch size matches the length of the generators."
|
|
)
|
|
|
|
shape = init_latents.shape
|
|
noise = randn_tensor(shape, generator=generator, device=device, dtype=dtype)
|
|
|
|
# get latents
|
|
print("add noise to latents at timestep", timestep)
|
|
init_latents = self.scheduler.add_noise(init_latents, noise, timestep)
|
|
latents = init_latents
|
|
|
|
return latents
|
|
|
|
@torch.no_grad()
|
|
def __call__(
|
|
self,
|
|
image: Union[torch.Tensor, PIL.Image.Image] = None,
|
|
strength: float = 0.8,
|
|
batch_size: int = 1,
|
|
generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
|
|
eta: float = 0.0,
|
|
num_inference_steps: int = 50,
|
|
use_clipped_model_output: Optional[bool] = None,
|
|
output_type: Optional[str] = "pil",
|
|
return_dict: bool = True,
|
|
) -> Union[ImagePipelineOutput, Tuple]:
|
|
r"""
|
|
Args:
|
|
image (`torch.Tensor` or `PIL.Image.Image`):
|
|
`Image`, or tensor representing an image batch, that will be used as the starting point for the
|
|
process.
|
|
strength (`float`, *optional*, defaults to 0.8):
|
|
Conceptually, indicates how much to transform the reference `image`. Must be between 0 and 1. `image`
|
|
will be used as a starting point, adding more noise to it the larger the `strength`. The number of
|
|
denoising steps depends on the amount of noise initially added. When `strength` is 1, added noise will
|
|
be maximum and the denoising process will run for the full number of iterations specified in
|
|
`num_inference_steps`. A value of 1, therefore, essentially ignores `image`.
|
|
batch_size (`int`, *optional*, defaults to 1):
|
|
The number of images to generate.
|
|
generator (`torch.Generator`, *optional*):
|
|
One or a list of [torch generator(s)](https://pytorch.org/docs/stable/generated/torch.Generator.html)
|
|
to make generation deterministic.
|
|
eta (`float`, *optional*, defaults to 0.0):
|
|
The eta parameter which controls the scale of the variance (0 is DDIM and 1 is one type of DDPM).
|
|
num_inference_steps (`int`, *optional*, defaults to 50):
|
|
The number of denoising steps. More denoising steps usually lead to a higher quality image at the
|
|
expense of slower inference.
|
|
use_clipped_model_output (`bool`, *optional*, defaults to `None`):
|
|
if `True` or `False`, see documentation for `DDIMScheduler.step`. If `None`, nothing is passed
|
|
downstream to the scheduler. So use `None` for schedulers which don't support this argument.
|
|
output_type (`str`, *optional*, defaults to `"pil"`):
|
|
The output format of the generate image. Choose between
|
|
[PIL](https://pillow.readthedocs.io/en/stable/): `PIL.Image.Image` or `np.array`.
|
|
return_dict (`bool`, *optional*, defaults to `True`):
|
|
Whether or not to return a [`~pipelines.ImagePipelineOutput`] instead of a plain tuple.
|
|
|
|
Returns:
|
|
[`~pipelines.ImagePipelineOutput`] or `tuple`: [`~pipelines.utils.ImagePipelineOutput`] if `return_dict` is
|
|
True, otherwise a `tuple. When returning a tuple, the first element is a list with the generated images.
|
|
"""
|
|
# 1. Check inputs. Raise error if not correct
|
|
self.check_inputs(strength)
|
|
|
|
# 2. Preprocess image
|
|
image = preprocess(image)
|
|
|
|
# 3. set timesteps
|
|
self.scheduler.set_timesteps(num_inference_steps, device=self.device)
|
|
timesteps, num_inference_steps = self.get_timesteps(num_inference_steps, strength, self.device)
|
|
latent_timestep = timesteps[:1].repeat(batch_size)
|
|
|
|
# 4. Prepare latent variables
|
|
latents = self.prepare_latents(image, latent_timestep, batch_size, self.unet.dtype, self.device, generator)
|
|
image = latents
|
|
|
|
# 5. Denoising loop
|
|
for t in self.progress_bar(timesteps):
|
|
# 1. predict noise model_output
|
|
model_output = self.unet(image, t).sample
|
|
|
|
# 2. predict previous mean of image x_t-1 and add variance depending on eta
|
|
# eta corresponds to η in paper and should be between [0, 1]
|
|
# do x_t -> x_t-1
|
|
image = self.scheduler.step(
|
|
model_output,
|
|
t,
|
|
image,
|
|
eta=eta,
|
|
use_clipped_model_output=use_clipped_model_output,
|
|
generator=generator,
|
|
).prev_sample
|
|
|
|
image = (image / 2 + 0.5).clamp(0, 1)
|
|
image = image.cpu().permute(0, 2, 3, 1).numpy()
|
|
if output_type == "pil":
|
|
image = self.numpy_to_pil(image)
|
|
|
|
if not return_dict:
|
|
return (image, latent_timestep.item())
|
|
|
|
return ImagePipelineOutput(images=image)
|