mirror of
https://github.com/huggingface/diffusers.git
synced 2026-01-29 07:22:12 +03:00
* update
* update
* update
* update
* update
* merge main
* Revert "merge main"
This reverts commit 65efbcead5.
272 lines
10 KiB
Python
272 lines
10 KiB
Python
import torch
|
|
|
|
from diffusers import EulerDiscreteScheduler
|
|
|
|
from ..testing_utils import torch_device
|
|
from .test_schedulers import SchedulerCommonTest
|
|
|
|
|
|
class EulerDiscreteSchedulerTest(SchedulerCommonTest):
|
|
scheduler_classes = (EulerDiscreteScheduler,)
|
|
num_inference_steps = 10
|
|
|
|
def get_scheduler_config(self, **kwargs):
|
|
config = {
|
|
"num_train_timesteps": 1100,
|
|
"beta_start": 0.0001,
|
|
"beta_end": 0.02,
|
|
"beta_schedule": "linear",
|
|
}
|
|
|
|
config.update(**kwargs)
|
|
return config
|
|
|
|
def test_timesteps(self):
|
|
for timesteps in [10, 50, 100, 1000]:
|
|
self.check_over_configs(num_train_timesteps=timesteps)
|
|
|
|
def test_betas(self):
|
|
for beta_start, beta_end in zip([0.00001, 0.0001, 0.001], [0.0002, 0.002, 0.02]):
|
|
self.check_over_configs(beta_start=beta_start, beta_end=beta_end)
|
|
|
|
def test_schedules(self):
|
|
for schedule in ["linear", "scaled_linear"]:
|
|
self.check_over_configs(beta_schedule=schedule)
|
|
|
|
def test_prediction_type(self):
|
|
for prediction_type in ["epsilon", "v_prediction"]:
|
|
self.check_over_configs(prediction_type=prediction_type)
|
|
|
|
def test_timestep_type(self):
|
|
timestep_types = ["discrete", "continuous"]
|
|
for timestep_type in timestep_types:
|
|
self.check_over_configs(timestep_type=timestep_type)
|
|
|
|
def test_karras_sigmas(self):
|
|
self.check_over_configs(use_karras_sigmas=True, sigma_min=0.02, sigma_max=700.0)
|
|
|
|
def test_rescale_betas_zero_snr(self):
|
|
for rescale_betas_zero_snr in [True, False]:
|
|
self.check_over_configs(rescale_betas_zero_snr=rescale_betas_zero_snr)
|
|
|
|
def full_loop(self, **config):
|
|
scheduler_class = self.scheduler_classes[0]
|
|
scheduler_config = self.get_scheduler_config(**config)
|
|
scheduler = scheduler_class(**scheduler_config)
|
|
|
|
num_inference_steps = self.num_inference_steps
|
|
scheduler.set_timesteps(num_inference_steps)
|
|
|
|
generator = torch.manual_seed(0)
|
|
|
|
model = self.dummy_model()
|
|
sample = self.dummy_sample_deter * scheduler.init_noise_sigma
|
|
sample = sample.to(torch_device)
|
|
|
|
for i, t in enumerate(scheduler.timesteps):
|
|
sample = scheduler.scale_model_input(sample, t)
|
|
|
|
model_output = model(sample, t)
|
|
|
|
output = scheduler.step(model_output, t, sample, generator=generator)
|
|
sample = output.prev_sample
|
|
return sample
|
|
|
|
def full_loop_custom_timesteps(self, **config):
|
|
scheduler_class = self.scheduler_classes[0]
|
|
scheduler_config = self.get_scheduler_config(**config)
|
|
scheduler = scheduler_class(**scheduler_config)
|
|
|
|
num_inference_steps = self.num_inference_steps
|
|
scheduler.set_timesteps(num_inference_steps)
|
|
timesteps = scheduler.timesteps
|
|
# reset the timesteps using `timesteps`
|
|
scheduler = scheduler_class(**scheduler_config)
|
|
scheduler.set_timesteps(num_inference_steps=None, timesteps=timesteps)
|
|
|
|
generator = torch.manual_seed(0)
|
|
|
|
model = self.dummy_model()
|
|
sample = self.dummy_sample_deter * scheduler.init_noise_sigma
|
|
sample = sample.to(torch_device)
|
|
|
|
for i, t in enumerate(scheduler.timesteps):
|
|
sample = scheduler.scale_model_input(sample, t)
|
|
|
|
model_output = model(sample, t)
|
|
|
|
output = scheduler.step(model_output, t, sample, generator=generator)
|
|
sample = output.prev_sample
|
|
return sample
|
|
|
|
def full_loop_custom_sigmas(self, **config):
|
|
scheduler_class = self.scheduler_classes[0]
|
|
scheduler_config = self.get_scheduler_config(**config)
|
|
scheduler = scheduler_class(**scheduler_config)
|
|
|
|
num_inference_steps = self.num_inference_steps
|
|
scheduler.set_timesteps(num_inference_steps)
|
|
sigmas = scheduler.sigmas
|
|
# reset the timesteps using `sigmas`
|
|
scheduler = scheduler_class(**scheduler_config)
|
|
scheduler.set_timesteps(num_inference_steps=None, sigmas=sigmas)
|
|
|
|
generator = torch.manual_seed(0)
|
|
|
|
model = self.dummy_model()
|
|
sample = self.dummy_sample_deter * scheduler.init_noise_sigma
|
|
sample = sample.to(torch_device)
|
|
|
|
for i, t in enumerate(scheduler.timesteps):
|
|
sample = scheduler.scale_model_input(sample, t)
|
|
|
|
model_output = model(sample, t)
|
|
|
|
output = scheduler.step(model_output, t, sample, generator=generator)
|
|
sample = output.prev_sample
|
|
return sample
|
|
|
|
def test_full_loop_no_noise(self):
|
|
sample = self.full_loop()
|
|
|
|
result_sum = torch.sum(torch.abs(sample))
|
|
result_mean = torch.mean(torch.abs(sample))
|
|
|
|
assert abs(result_sum.item() - 10.0807) < 1e-2
|
|
assert abs(result_mean.item() - 0.0131) < 1e-3
|
|
|
|
def test_full_loop_with_v_prediction(self):
|
|
sample = self.full_loop(prediction_type="v_prediction")
|
|
|
|
result_sum = torch.sum(torch.abs(sample))
|
|
result_mean = torch.mean(torch.abs(sample))
|
|
|
|
assert abs(result_sum.item() - 0.0002) < 1e-2
|
|
assert abs(result_mean.item() - 2.2676e-06) < 1e-3
|
|
|
|
def test_full_loop_device(self):
|
|
scheduler_class = self.scheduler_classes[0]
|
|
scheduler_config = self.get_scheduler_config()
|
|
scheduler = scheduler_class(**scheduler_config)
|
|
|
|
scheduler.set_timesteps(self.num_inference_steps, device=torch_device)
|
|
|
|
generator = torch.manual_seed(0)
|
|
|
|
model = self.dummy_model()
|
|
sample = self.dummy_sample_deter * scheduler.init_noise_sigma.cpu()
|
|
sample = sample.to(torch_device)
|
|
|
|
for t in scheduler.timesteps:
|
|
sample = scheduler.scale_model_input(sample, t)
|
|
|
|
model_output = model(sample, t)
|
|
|
|
output = scheduler.step(model_output, t, sample, generator=generator)
|
|
sample = output.prev_sample
|
|
|
|
result_sum = torch.sum(torch.abs(sample))
|
|
result_mean = torch.mean(torch.abs(sample))
|
|
|
|
assert abs(result_sum.item() - 10.0807) < 1e-2
|
|
assert abs(result_mean.item() - 0.0131) < 1e-3
|
|
|
|
def test_full_loop_device_karras_sigmas(self):
|
|
scheduler_class = self.scheduler_classes[0]
|
|
scheduler_config = self.get_scheduler_config()
|
|
scheduler = scheduler_class(**scheduler_config, use_karras_sigmas=True)
|
|
|
|
scheduler.set_timesteps(self.num_inference_steps, device=torch_device)
|
|
|
|
generator = torch.manual_seed(0)
|
|
|
|
model = self.dummy_model()
|
|
sample = self.dummy_sample_deter * scheduler.init_noise_sigma.cpu()
|
|
sample = sample.to(torch_device)
|
|
|
|
for t in scheduler.timesteps:
|
|
sample = scheduler.scale_model_input(sample, t)
|
|
|
|
model_output = model(sample, t)
|
|
|
|
output = scheduler.step(model_output, t, sample, generator=generator)
|
|
sample = output.prev_sample
|
|
|
|
result_sum = torch.sum(torch.abs(sample))
|
|
result_mean = torch.mean(torch.abs(sample))
|
|
|
|
assert abs(result_sum.item() - 124.52299499511719) < 1e-2
|
|
assert abs(result_mean.item() - 0.16213932633399963) < 1e-3
|
|
|
|
def test_full_loop_with_noise(self):
|
|
scheduler_class = self.scheduler_classes[0]
|
|
scheduler_config = self.get_scheduler_config()
|
|
scheduler = scheduler_class(**scheduler_config)
|
|
|
|
scheduler.set_timesteps(self.num_inference_steps)
|
|
|
|
generator = torch.manual_seed(0)
|
|
|
|
model = self.dummy_model()
|
|
sample = self.dummy_sample_deter * scheduler.init_noise_sigma
|
|
|
|
# add noise
|
|
t_start = self.num_inference_steps - 2
|
|
noise = self.dummy_noise_deter
|
|
noise = noise.to(sample.device)
|
|
timesteps = scheduler.timesteps[t_start * scheduler.order :]
|
|
sample = scheduler.add_noise(sample, noise, timesteps[:1])
|
|
|
|
for i, t in enumerate(timesteps):
|
|
sample = scheduler.scale_model_input(sample, t)
|
|
|
|
model_output = model(sample, t)
|
|
|
|
output = scheduler.step(model_output, t, sample, generator=generator)
|
|
sample = output.prev_sample
|
|
|
|
result_sum = torch.sum(torch.abs(sample))
|
|
result_mean = torch.mean(torch.abs(sample))
|
|
|
|
assert abs(result_sum.item() - 57062.9297) < 1e-2, f" expected result sum 57062.9297, but get {result_sum}"
|
|
assert abs(result_mean.item() - 74.3007) < 1e-3, f" expected result mean 74.3007, but get {result_mean}"
|
|
|
|
def test_custom_timesteps(self):
|
|
for prediction_type in ["epsilon", "sample", "v_prediction"]:
|
|
for interpolation_type in ["linear", "log_linear"]:
|
|
for final_sigmas_type in ["sigma_min", "zero"]:
|
|
sample = self.full_loop(
|
|
prediction_type=prediction_type,
|
|
interpolation_type=interpolation_type,
|
|
final_sigmas_type=final_sigmas_type,
|
|
)
|
|
sample_custom_timesteps = self.full_loop_custom_timesteps(
|
|
prediction_type=prediction_type,
|
|
interpolation_type=interpolation_type,
|
|
final_sigmas_type=final_sigmas_type,
|
|
)
|
|
assert torch.sum(torch.abs(sample - sample_custom_timesteps)) < 1e-5, (
|
|
f"Scheduler outputs are not identical for prediction_type: {prediction_type}, interpolation_type: {interpolation_type} and final_sigmas_type: {final_sigmas_type}"
|
|
)
|
|
|
|
def test_custom_sigmas(self):
|
|
for prediction_type in ["epsilon", "sample", "v_prediction"]:
|
|
for final_sigmas_type in ["sigma_min", "zero"]:
|
|
sample = self.full_loop(
|
|
prediction_type=prediction_type,
|
|
final_sigmas_type=final_sigmas_type,
|
|
)
|
|
sample_custom_timesteps = self.full_loop_custom_sigmas(
|
|
prediction_type=prediction_type,
|
|
final_sigmas_type=final_sigmas_type,
|
|
)
|
|
assert torch.sum(torch.abs(sample - sample_custom_timesteps)) < 1e-5, (
|
|
f"Scheduler outputs are not identical for prediction_type: {prediction_type} and final_sigmas_type: {final_sigmas_type}"
|
|
)
|
|
|
|
def test_beta_sigmas(self):
|
|
self.check_over_configs(use_beta_sigmas=True)
|
|
|
|
def test_exponential_sigmas(self):
|
|
self.check_over_configs(use_exponential_sigmas=True)
|