mirror of
https://github.com/huggingface/diffusers.git
synced 2026-01-29 07:22:12 +03:00
* update
* update
* update
* update
* update
* merge main
* Revert "merge main"
This reverts commit 65efbcead5.
1472 lines
58 KiB
Python
1472 lines
58 KiB
Python
# coding=utf-8
|
|
# Copyright 2025 HuggingFace Inc.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
|
|
import copy
|
|
import gc
|
|
import os
|
|
import tempfile
|
|
import unittest
|
|
from collections import OrderedDict
|
|
|
|
import torch
|
|
from huggingface_hub import snapshot_download
|
|
from parameterized import parameterized
|
|
from pytest import mark
|
|
|
|
from diffusers import UNet2DConditionModel
|
|
from diffusers.models.attention_processor import (
|
|
CustomDiffusionAttnProcessor,
|
|
IPAdapterAttnProcessor,
|
|
IPAdapterAttnProcessor2_0,
|
|
)
|
|
from diffusers.models.embeddings import ImageProjection, IPAdapterFaceIDImageProjection, IPAdapterPlusImageProjection
|
|
from diffusers.utils import logging
|
|
from diffusers.utils.import_utils import is_xformers_available
|
|
|
|
from ...testing_utils import (
|
|
backend_empty_cache,
|
|
backend_max_memory_allocated,
|
|
backend_reset_max_memory_allocated,
|
|
backend_reset_peak_memory_stats,
|
|
enable_full_determinism,
|
|
floats_tensor,
|
|
is_peft_available,
|
|
load_hf_numpy,
|
|
require_peft_backend,
|
|
require_torch_accelerator,
|
|
require_torch_accelerator_with_fp16,
|
|
skip_mps,
|
|
slow,
|
|
torch_all_close,
|
|
torch_device,
|
|
)
|
|
from ..test_modeling_common import (
|
|
LoraHotSwappingForModelTesterMixin,
|
|
ModelTesterMixin,
|
|
TorchCompileTesterMixin,
|
|
UNetTesterMixin,
|
|
)
|
|
|
|
|
|
if is_peft_available():
|
|
from peft import LoraConfig
|
|
from peft.tuners.tuners_utils import BaseTunerLayer
|
|
|
|
|
|
logger = logging.get_logger(__name__)
|
|
|
|
enable_full_determinism()
|
|
|
|
|
|
def get_unet_lora_config():
|
|
rank = 4
|
|
unet_lora_config = LoraConfig(
|
|
r=rank,
|
|
lora_alpha=rank,
|
|
target_modules=["to_q", "to_k", "to_v", "to_out.0"],
|
|
init_lora_weights=False,
|
|
use_dora=False,
|
|
)
|
|
return unet_lora_config
|
|
|
|
|
|
def check_if_lora_correctly_set(model) -> bool:
|
|
"""
|
|
Checks if the LoRA layers are correctly set with peft
|
|
"""
|
|
for module in model.modules():
|
|
if isinstance(module, BaseTunerLayer):
|
|
return True
|
|
return False
|
|
|
|
|
|
def create_ip_adapter_state_dict(model):
|
|
# "ip_adapter" (cross-attention weights)
|
|
ip_cross_attn_state_dict = {}
|
|
key_id = 1
|
|
|
|
for name in model.attn_processors.keys():
|
|
cross_attention_dim = (
|
|
None if name.endswith("attn1.processor") or "motion_module" in name else model.config.cross_attention_dim
|
|
)
|
|
|
|
if name.startswith("mid_block"):
|
|
hidden_size = model.config.block_out_channels[-1]
|
|
elif name.startswith("up_blocks"):
|
|
block_id = int(name[len("up_blocks.")])
|
|
hidden_size = list(reversed(model.config.block_out_channels))[block_id]
|
|
elif name.startswith("down_blocks"):
|
|
block_id = int(name[len("down_blocks.")])
|
|
hidden_size = model.config.block_out_channels[block_id]
|
|
|
|
if cross_attention_dim is not None:
|
|
sd = IPAdapterAttnProcessor(
|
|
hidden_size=hidden_size, cross_attention_dim=cross_attention_dim, scale=1.0
|
|
).state_dict()
|
|
ip_cross_attn_state_dict.update(
|
|
{
|
|
f"{key_id}.to_k_ip.weight": sd["to_k_ip.0.weight"],
|
|
f"{key_id}.to_v_ip.weight": sd["to_v_ip.0.weight"],
|
|
}
|
|
)
|
|
|
|
key_id += 2
|
|
|
|
# "image_proj" (ImageProjection layer weights)
|
|
cross_attention_dim = model.config["cross_attention_dim"]
|
|
image_projection = ImageProjection(
|
|
cross_attention_dim=cross_attention_dim, image_embed_dim=cross_attention_dim, num_image_text_embeds=4
|
|
)
|
|
|
|
ip_image_projection_state_dict = {}
|
|
sd = image_projection.state_dict()
|
|
ip_image_projection_state_dict.update(
|
|
{
|
|
"proj.weight": sd["image_embeds.weight"],
|
|
"proj.bias": sd["image_embeds.bias"],
|
|
"norm.weight": sd["norm.weight"],
|
|
"norm.bias": sd["norm.bias"],
|
|
}
|
|
)
|
|
|
|
del sd
|
|
ip_state_dict = {}
|
|
ip_state_dict.update({"image_proj": ip_image_projection_state_dict, "ip_adapter": ip_cross_attn_state_dict})
|
|
return ip_state_dict
|
|
|
|
|
|
def create_ip_adapter_plus_state_dict(model):
|
|
# "ip_adapter" (cross-attention weights)
|
|
ip_cross_attn_state_dict = {}
|
|
key_id = 1
|
|
|
|
for name in model.attn_processors.keys():
|
|
cross_attention_dim = None if name.endswith("attn1.processor") else model.config.cross_attention_dim
|
|
if name.startswith("mid_block"):
|
|
hidden_size = model.config.block_out_channels[-1]
|
|
elif name.startswith("up_blocks"):
|
|
block_id = int(name[len("up_blocks.")])
|
|
hidden_size = list(reversed(model.config.block_out_channels))[block_id]
|
|
elif name.startswith("down_blocks"):
|
|
block_id = int(name[len("down_blocks.")])
|
|
hidden_size = model.config.block_out_channels[block_id]
|
|
if cross_attention_dim is not None:
|
|
sd = IPAdapterAttnProcessor(
|
|
hidden_size=hidden_size, cross_attention_dim=cross_attention_dim, scale=1.0
|
|
).state_dict()
|
|
ip_cross_attn_state_dict.update(
|
|
{
|
|
f"{key_id}.to_k_ip.weight": sd["to_k_ip.0.weight"],
|
|
f"{key_id}.to_v_ip.weight": sd["to_v_ip.0.weight"],
|
|
}
|
|
)
|
|
|
|
key_id += 2
|
|
|
|
# "image_proj" (ImageProjection layer weights)
|
|
cross_attention_dim = model.config["cross_attention_dim"]
|
|
image_projection = IPAdapterPlusImageProjection(
|
|
embed_dims=cross_attention_dim, output_dims=cross_attention_dim, dim_head=32, heads=2, num_queries=4
|
|
)
|
|
|
|
ip_image_projection_state_dict = OrderedDict()
|
|
|
|
for k, v in image_projection.state_dict().items():
|
|
if "2.to" in k:
|
|
k = k.replace("2.to", "0.to")
|
|
elif "layers.0.ln0" in k:
|
|
k = k.replace("layers.0.ln0", "layers.0.0.norm1")
|
|
elif "layers.0.ln1" in k:
|
|
k = k.replace("layers.0.ln1", "layers.0.0.norm2")
|
|
elif "layers.1.ln0" in k:
|
|
k = k.replace("layers.1.ln0", "layers.1.0.norm1")
|
|
elif "layers.1.ln1" in k:
|
|
k = k.replace("layers.1.ln1", "layers.1.0.norm2")
|
|
elif "layers.2.ln0" in k:
|
|
k = k.replace("layers.2.ln0", "layers.2.0.norm1")
|
|
elif "layers.2.ln1" in k:
|
|
k = k.replace("layers.2.ln1", "layers.2.0.norm2")
|
|
elif "layers.3.ln0" in k:
|
|
k = k.replace("layers.3.ln0", "layers.3.0.norm1")
|
|
elif "layers.3.ln1" in k:
|
|
k = k.replace("layers.3.ln1", "layers.3.0.norm2")
|
|
elif "to_q" in k:
|
|
parts = k.split(".")
|
|
parts[2] = "attn"
|
|
k = ".".join(parts)
|
|
elif "to_out.0" in k:
|
|
parts = k.split(".")
|
|
parts[2] = "attn"
|
|
k = ".".join(parts)
|
|
k = k.replace("to_out.0", "to_out")
|
|
else:
|
|
k = k.replace("0.ff.0", "0.1.0")
|
|
k = k.replace("0.ff.1.net.0.proj", "0.1.1")
|
|
k = k.replace("0.ff.1.net.2", "0.1.3")
|
|
|
|
k = k.replace("1.ff.0", "1.1.0")
|
|
k = k.replace("1.ff.1.net.0.proj", "1.1.1")
|
|
k = k.replace("1.ff.1.net.2", "1.1.3")
|
|
|
|
k = k.replace("2.ff.0", "2.1.0")
|
|
k = k.replace("2.ff.1.net.0.proj", "2.1.1")
|
|
k = k.replace("2.ff.1.net.2", "2.1.3")
|
|
|
|
k = k.replace("3.ff.0", "3.1.0")
|
|
k = k.replace("3.ff.1.net.0.proj", "3.1.1")
|
|
k = k.replace("3.ff.1.net.2", "3.1.3")
|
|
|
|
# if "norm_cross" in k:
|
|
# ip_image_projection_state_dict[k.replace("norm_cross", "norm1")] = v
|
|
# elif "layer_norm" in k:
|
|
# ip_image_projection_state_dict[k.replace("layer_norm", "norm2")] = v
|
|
if "to_k" in k:
|
|
parts = k.split(".")
|
|
parts[2] = "attn"
|
|
k = ".".join(parts)
|
|
ip_image_projection_state_dict[k.replace("to_k", "to_kv")] = torch.cat([v, v], dim=0)
|
|
elif "to_v" in k:
|
|
continue
|
|
else:
|
|
ip_image_projection_state_dict[k] = v
|
|
|
|
ip_state_dict = {}
|
|
ip_state_dict.update({"image_proj": ip_image_projection_state_dict, "ip_adapter": ip_cross_attn_state_dict})
|
|
return ip_state_dict
|
|
|
|
|
|
def create_ip_adapter_faceid_state_dict(model):
|
|
# "ip_adapter" (cross-attention weights)
|
|
# no LoRA weights
|
|
ip_cross_attn_state_dict = {}
|
|
key_id = 1
|
|
|
|
for name in model.attn_processors.keys():
|
|
cross_attention_dim = (
|
|
None if name.endswith("attn1.processor") or "motion_module" in name else model.config.cross_attention_dim
|
|
)
|
|
|
|
if name.startswith("mid_block"):
|
|
hidden_size = model.config.block_out_channels[-1]
|
|
elif name.startswith("up_blocks"):
|
|
block_id = int(name[len("up_blocks.")])
|
|
hidden_size = list(reversed(model.config.block_out_channels))[block_id]
|
|
elif name.startswith("down_blocks"):
|
|
block_id = int(name[len("down_blocks.")])
|
|
hidden_size = model.config.block_out_channels[block_id]
|
|
|
|
if cross_attention_dim is not None:
|
|
sd = IPAdapterAttnProcessor(
|
|
hidden_size=hidden_size, cross_attention_dim=cross_attention_dim, scale=1.0
|
|
).state_dict()
|
|
ip_cross_attn_state_dict.update(
|
|
{
|
|
f"{key_id}.to_k_ip.weight": sd["to_k_ip.0.weight"],
|
|
f"{key_id}.to_v_ip.weight": sd["to_v_ip.0.weight"],
|
|
}
|
|
)
|
|
|
|
key_id += 2
|
|
|
|
# "image_proj" (ImageProjection layer weights)
|
|
cross_attention_dim = model.config["cross_attention_dim"]
|
|
image_projection = IPAdapterFaceIDImageProjection(
|
|
cross_attention_dim=cross_attention_dim, image_embed_dim=cross_attention_dim, mult=2, num_tokens=4
|
|
)
|
|
|
|
ip_image_projection_state_dict = {}
|
|
sd = image_projection.state_dict()
|
|
ip_image_projection_state_dict.update(
|
|
{
|
|
"proj.0.weight": sd["ff.net.0.proj.weight"],
|
|
"proj.0.bias": sd["ff.net.0.proj.bias"],
|
|
"proj.2.weight": sd["ff.net.2.weight"],
|
|
"proj.2.bias": sd["ff.net.2.bias"],
|
|
"norm.weight": sd["norm.weight"],
|
|
"norm.bias": sd["norm.bias"],
|
|
}
|
|
)
|
|
|
|
del sd
|
|
ip_state_dict = {}
|
|
ip_state_dict.update({"image_proj": ip_image_projection_state_dict, "ip_adapter": ip_cross_attn_state_dict})
|
|
return ip_state_dict
|
|
|
|
|
|
def create_custom_diffusion_layers(model, mock_weights: bool = True):
|
|
train_kv = True
|
|
train_q_out = True
|
|
custom_diffusion_attn_procs = {}
|
|
|
|
st = model.state_dict()
|
|
for name, _ in model.attn_processors.items():
|
|
cross_attention_dim = None if name.endswith("attn1.processor") else model.config.cross_attention_dim
|
|
if name.startswith("mid_block"):
|
|
hidden_size = model.config.block_out_channels[-1]
|
|
elif name.startswith("up_blocks"):
|
|
block_id = int(name[len("up_blocks.")])
|
|
hidden_size = list(reversed(model.config.block_out_channels))[block_id]
|
|
elif name.startswith("down_blocks"):
|
|
block_id = int(name[len("down_blocks.")])
|
|
hidden_size = model.config.block_out_channels[block_id]
|
|
layer_name = name.split(".processor")[0]
|
|
weights = {
|
|
"to_k_custom_diffusion.weight": st[layer_name + ".to_k.weight"],
|
|
"to_v_custom_diffusion.weight": st[layer_name + ".to_v.weight"],
|
|
}
|
|
if train_q_out:
|
|
weights["to_q_custom_diffusion.weight"] = st[layer_name + ".to_q.weight"]
|
|
weights["to_out_custom_diffusion.0.weight"] = st[layer_name + ".to_out.0.weight"]
|
|
weights["to_out_custom_diffusion.0.bias"] = st[layer_name + ".to_out.0.bias"]
|
|
if cross_attention_dim is not None:
|
|
custom_diffusion_attn_procs[name] = CustomDiffusionAttnProcessor(
|
|
train_kv=train_kv,
|
|
train_q_out=train_q_out,
|
|
hidden_size=hidden_size,
|
|
cross_attention_dim=cross_attention_dim,
|
|
).to(model.device)
|
|
custom_diffusion_attn_procs[name].load_state_dict(weights)
|
|
if mock_weights:
|
|
# add 1 to weights to mock trained weights
|
|
with torch.no_grad():
|
|
custom_diffusion_attn_procs[name].to_k_custom_diffusion.weight += 1
|
|
custom_diffusion_attn_procs[name].to_v_custom_diffusion.weight += 1
|
|
else:
|
|
custom_diffusion_attn_procs[name] = CustomDiffusionAttnProcessor(
|
|
train_kv=False,
|
|
train_q_out=False,
|
|
hidden_size=hidden_size,
|
|
cross_attention_dim=cross_attention_dim,
|
|
)
|
|
del st
|
|
return custom_diffusion_attn_procs
|
|
|
|
|
|
class UNet2DConditionModelTests(ModelTesterMixin, UNetTesterMixin, unittest.TestCase):
|
|
model_class = UNet2DConditionModel
|
|
main_input_name = "sample"
|
|
# We override the items here because the unet under consideration is small.
|
|
model_split_percents = [0.5, 0.34, 0.4]
|
|
|
|
@property
|
|
def dummy_input(self):
|
|
batch_size = 4
|
|
num_channels = 4
|
|
sizes = (16, 16)
|
|
|
|
noise = floats_tensor((batch_size, num_channels) + sizes).to(torch_device)
|
|
time_step = torch.tensor([10]).to(torch_device)
|
|
encoder_hidden_states = floats_tensor((batch_size, 4, 8)).to(torch_device)
|
|
|
|
return {"sample": noise, "timestep": time_step, "encoder_hidden_states": encoder_hidden_states}
|
|
|
|
@property
|
|
def input_shape(self):
|
|
return (4, 16, 16)
|
|
|
|
@property
|
|
def output_shape(self):
|
|
return (4, 16, 16)
|
|
|
|
def prepare_init_args_and_inputs_for_common(self):
|
|
init_dict = {
|
|
"block_out_channels": (4, 8),
|
|
"norm_num_groups": 4,
|
|
"down_block_types": ("CrossAttnDownBlock2D", "DownBlock2D"),
|
|
"up_block_types": ("UpBlock2D", "CrossAttnUpBlock2D"),
|
|
"cross_attention_dim": 8,
|
|
"attention_head_dim": 2,
|
|
"out_channels": 4,
|
|
"in_channels": 4,
|
|
"layers_per_block": 1,
|
|
"sample_size": 16,
|
|
}
|
|
inputs_dict = self.dummy_input
|
|
return init_dict, inputs_dict
|
|
|
|
@unittest.skipIf(
|
|
torch_device != "cuda" or not is_xformers_available(),
|
|
reason="XFormers attention is only available with CUDA and `xformers` installed",
|
|
)
|
|
def test_xformers_enable_works(self):
|
|
init_dict, inputs_dict = self.prepare_init_args_and_inputs_for_common()
|
|
model = self.model_class(**init_dict)
|
|
|
|
model.enable_xformers_memory_efficient_attention()
|
|
|
|
assert (
|
|
model.mid_block.attentions[0].transformer_blocks[0].attn1.processor.__class__.__name__
|
|
== "XFormersAttnProcessor"
|
|
), "xformers is not enabled"
|
|
|
|
def test_model_with_attention_head_dim_tuple(self):
|
|
init_dict, inputs_dict = self.prepare_init_args_and_inputs_for_common()
|
|
|
|
init_dict["block_out_channels"] = (16, 32)
|
|
init_dict["attention_head_dim"] = (8, 16)
|
|
|
|
model = self.model_class(**init_dict)
|
|
model.to(torch_device)
|
|
model.eval()
|
|
|
|
with torch.no_grad():
|
|
output = model(**inputs_dict)
|
|
|
|
if isinstance(output, dict):
|
|
output = output.sample
|
|
|
|
self.assertIsNotNone(output)
|
|
expected_shape = inputs_dict["sample"].shape
|
|
self.assertEqual(output.shape, expected_shape, "Input and output shapes do not match")
|
|
|
|
def test_model_with_use_linear_projection(self):
|
|
init_dict, inputs_dict = self.prepare_init_args_and_inputs_for_common()
|
|
|
|
init_dict["use_linear_projection"] = True
|
|
|
|
model = self.model_class(**init_dict)
|
|
model.to(torch_device)
|
|
model.eval()
|
|
|
|
with torch.no_grad():
|
|
output = model(**inputs_dict)
|
|
|
|
if isinstance(output, dict):
|
|
output = output.sample
|
|
|
|
self.assertIsNotNone(output)
|
|
expected_shape = inputs_dict["sample"].shape
|
|
self.assertEqual(output.shape, expected_shape, "Input and output shapes do not match")
|
|
|
|
def test_model_with_cross_attention_dim_tuple(self):
|
|
init_dict, inputs_dict = self.prepare_init_args_and_inputs_for_common()
|
|
|
|
init_dict["cross_attention_dim"] = (8, 8)
|
|
|
|
model = self.model_class(**init_dict)
|
|
model.to(torch_device)
|
|
model.eval()
|
|
|
|
with torch.no_grad():
|
|
output = model(**inputs_dict)
|
|
|
|
if isinstance(output, dict):
|
|
output = output.sample
|
|
|
|
self.assertIsNotNone(output)
|
|
expected_shape = inputs_dict["sample"].shape
|
|
self.assertEqual(output.shape, expected_shape, "Input and output shapes do not match")
|
|
|
|
def test_model_with_simple_projection(self):
|
|
init_dict, inputs_dict = self.prepare_init_args_and_inputs_for_common()
|
|
|
|
batch_size, _, _, sample_size = inputs_dict["sample"].shape
|
|
|
|
init_dict["class_embed_type"] = "simple_projection"
|
|
init_dict["projection_class_embeddings_input_dim"] = sample_size
|
|
|
|
inputs_dict["class_labels"] = floats_tensor((batch_size, sample_size)).to(torch_device)
|
|
|
|
model = self.model_class(**init_dict)
|
|
model.to(torch_device)
|
|
model.eval()
|
|
|
|
with torch.no_grad():
|
|
output = model(**inputs_dict)
|
|
|
|
if isinstance(output, dict):
|
|
output = output.sample
|
|
|
|
self.assertIsNotNone(output)
|
|
expected_shape = inputs_dict["sample"].shape
|
|
self.assertEqual(output.shape, expected_shape, "Input and output shapes do not match")
|
|
|
|
def test_model_with_class_embeddings_concat(self):
|
|
init_dict, inputs_dict = self.prepare_init_args_and_inputs_for_common()
|
|
|
|
batch_size, _, _, sample_size = inputs_dict["sample"].shape
|
|
|
|
init_dict["class_embed_type"] = "simple_projection"
|
|
init_dict["projection_class_embeddings_input_dim"] = sample_size
|
|
init_dict["class_embeddings_concat"] = True
|
|
|
|
inputs_dict["class_labels"] = floats_tensor((batch_size, sample_size)).to(torch_device)
|
|
|
|
model = self.model_class(**init_dict)
|
|
model.to(torch_device)
|
|
model.eval()
|
|
|
|
with torch.no_grad():
|
|
output = model(**inputs_dict)
|
|
|
|
if isinstance(output, dict):
|
|
output = output.sample
|
|
|
|
self.assertIsNotNone(output)
|
|
expected_shape = inputs_dict["sample"].shape
|
|
self.assertEqual(output.shape, expected_shape, "Input and output shapes do not match")
|
|
|
|
def test_model_attention_slicing(self):
|
|
init_dict, inputs_dict = self.prepare_init_args_and_inputs_for_common()
|
|
|
|
init_dict["block_out_channels"] = (16, 32)
|
|
init_dict["attention_head_dim"] = (8, 16)
|
|
|
|
model = self.model_class(**init_dict)
|
|
model.to(torch_device)
|
|
model.eval()
|
|
|
|
model.set_attention_slice("auto")
|
|
with torch.no_grad():
|
|
output = model(**inputs_dict)
|
|
assert output is not None
|
|
|
|
model.set_attention_slice("max")
|
|
with torch.no_grad():
|
|
output = model(**inputs_dict)
|
|
assert output is not None
|
|
|
|
model.set_attention_slice(2)
|
|
with torch.no_grad():
|
|
output = model(**inputs_dict)
|
|
assert output is not None
|
|
|
|
def test_model_sliceable_head_dim(self):
|
|
init_dict, inputs_dict = self.prepare_init_args_and_inputs_for_common()
|
|
|
|
init_dict["block_out_channels"] = (16, 32)
|
|
init_dict["attention_head_dim"] = (8, 16)
|
|
|
|
model = self.model_class(**init_dict)
|
|
|
|
def check_sliceable_dim_attr(module: torch.nn.Module):
|
|
if hasattr(module, "set_attention_slice"):
|
|
assert isinstance(module.sliceable_head_dim, int)
|
|
|
|
for child in module.children():
|
|
check_sliceable_dim_attr(child)
|
|
|
|
# retrieve number of attention layers
|
|
for module in model.children():
|
|
check_sliceable_dim_attr(module)
|
|
|
|
def test_gradient_checkpointing_is_applied(self):
|
|
expected_set = {
|
|
"CrossAttnUpBlock2D",
|
|
"CrossAttnDownBlock2D",
|
|
"UNetMidBlock2DCrossAttn",
|
|
"UpBlock2D",
|
|
"Transformer2DModel",
|
|
"DownBlock2D",
|
|
}
|
|
attention_head_dim = (8, 16)
|
|
block_out_channels = (16, 32)
|
|
super().test_gradient_checkpointing_is_applied(
|
|
expected_set=expected_set, attention_head_dim=attention_head_dim, block_out_channels=block_out_channels
|
|
)
|
|
|
|
def test_special_attn_proc(self):
|
|
class AttnEasyProc(torch.nn.Module):
|
|
def __init__(self, num):
|
|
super().__init__()
|
|
self.weight = torch.nn.Parameter(torch.tensor(num))
|
|
self.is_run = False
|
|
self.number = 0
|
|
self.counter = 0
|
|
|
|
def __call__(self, attn, hidden_states, encoder_hidden_states=None, attention_mask=None, number=None):
|
|
batch_size, sequence_length, _ = hidden_states.shape
|
|
attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length, batch_size)
|
|
|
|
query = attn.to_q(hidden_states)
|
|
|
|
encoder_hidden_states = encoder_hidden_states if encoder_hidden_states is not None else hidden_states
|
|
key = attn.to_k(encoder_hidden_states)
|
|
value = attn.to_v(encoder_hidden_states)
|
|
|
|
query = attn.head_to_batch_dim(query)
|
|
key = attn.head_to_batch_dim(key)
|
|
value = attn.head_to_batch_dim(value)
|
|
|
|
attention_probs = attn.get_attention_scores(query, key, attention_mask)
|
|
hidden_states = torch.bmm(attention_probs, value)
|
|
hidden_states = attn.batch_to_head_dim(hidden_states)
|
|
|
|
# linear proj
|
|
hidden_states = attn.to_out[0](hidden_states)
|
|
# dropout
|
|
hidden_states = attn.to_out[1](hidden_states)
|
|
|
|
hidden_states += self.weight
|
|
|
|
self.is_run = True
|
|
self.counter += 1
|
|
self.number = number
|
|
|
|
return hidden_states
|
|
|
|
# enable deterministic behavior for gradient checkpointing
|
|
init_dict, inputs_dict = self.prepare_init_args_and_inputs_for_common()
|
|
|
|
init_dict["block_out_channels"] = (16, 32)
|
|
init_dict["attention_head_dim"] = (8, 16)
|
|
|
|
model = self.model_class(**init_dict)
|
|
model.to(torch_device)
|
|
|
|
processor = AttnEasyProc(5.0)
|
|
|
|
model.set_attn_processor(processor)
|
|
model(**inputs_dict, cross_attention_kwargs={"number": 123}).sample
|
|
|
|
assert processor.counter == 8
|
|
assert processor.is_run
|
|
assert processor.number == 123
|
|
|
|
@parameterized.expand(
|
|
[
|
|
# fmt: off
|
|
[torch.bool],
|
|
[torch.long],
|
|
[torch.float],
|
|
# fmt: on
|
|
]
|
|
)
|
|
def test_model_xattn_mask(self, mask_dtype):
|
|
init_dict, inputs_dict = self.prepare_init_args_and_inputs_for_common()
|
|
|
|
model = self.model_class(**{**init_dict, "attention_head_dim": (8, 16), "block_out_channels": (16, 32)})
|
|
model.to(torch_device)
|
|
model.eval()
|
|
|
|
cond = inputs_dict["encoder_hidden_states"]
|
|
with torch.no_grad():
|
|
full_cond_out = model(**inputs_dict).sample
|
|
assert full_cond_out is not None
|
|
|
|
keepall_mask = torch.ones(*cond.shape[:-1], device=cond.device, dtype=mask_dtype)
|
|
full_cond_keepallmask_out = model(**{**inputs_dict, "encoder_attention_mask": keepall_mask}).sample
|
|
assert full_cond_keepallmask_out.allclose(full_cond_out, rtol=1e-05, atol=1e-05), (
|
|
"a 'keep all' mask should give the same result as no mask"
|
|
)
|
|
|
|
trunc_cond = cond[:, :-1, :]
|
|
trunc_cond_out = model(**{**inputs_dict, "encoder_hidden_states": trunc_cond}).sample
|
|
assert not trunc_cond_out.allclose(full_cond_out, rtol=1e-05, atol=1e-05), (
|
|
"discarding the last token from our cond should change the result"
|
|
)
|
|
|
|
batch, tokens, _ = cond.shape
|
|
mask_last = (torch.arange(tokens) < tokens - 1).expand(batch, -1).to(cond.device, mask_dtype)
|
|
masked_cond_out = model(**{**inputs_dict, "encoder_attention_mask": mask_last}).sample
|
|
assert masked_cond_out.allclose(trunc_cond_out, rtol=1e-05, atol=1e-05), (
|
|
"masking the last token from our cond should be equivalent to truncating that token out of the condition"
|
|
)
|
|
|
|
# see diffusers.models.attention_processor::Attention#prepare_attention_mask
|
|
# note: we may not need to fix mask padding to work for stable-diffusion cross-attn masks.
|
|
# since the use-case (somebody passes in a too-short cross-attn mask) is pretty esoteric.
|
|
# maybe it's fine that this only works for the unclip use-case.
|
|
@mark.skip(
|
|
reason="we currently pad mask by target_length tokens (what unclip needs), whereas stable-diffusion's cross-attn needs to instead pad by remaining_length."
|
|
)
|
|
def test_model_xattn_padding(self):
|
|
init_dict, inputs_dict = self.prepare_init_args_and_inputs_for_common()
|
|
|
|
model = self.model_class(**{**init_dict, "attention_head_dim": (8, 16)})
|
|
model.to(torch_device)
|
|
model.eval()
|
|
|
|
cond = inputs_dict["encoder_hidden_states"]
|
|
with torch.no_grad():
|
|
full_cond_out = model(**inputs_dict).sample
|
|
assert full_cond_out is not None
|
|
|
|
batch, tokens, _ = cond.shape
|
|
keeplast_mask = (torch.arange(tokens) == tokens - 1).expand(batch, -1).to(cond.device, torch.bool)
|
|
keeplast_out = model(**{**inputs_dict, "encoder_attention_mask": keeplast_mask}).sample
|
|
assert not keeplast_out.allclose(full_cond_out), "a 'keep last token' mask should change the result"
|
|
|
|
trunc_mask = torch.zeros(batch, tokens - 1, device=cond.device, dtype=torch.bool)
|
|
trunc_mask_out = model(**{**inputs_dict, "encoder_attention_mask": trunc_mask}).sample
|
|
assert trunc_mask_out.allclose(keeplast_out), (
|
|
"a mask with fewer tokens than condition, will be padded with 'keep' tokens. a 'discard-all' mask missing the final token is thus equivalent to a 'keep last' mask."
|
|
)
|
|
|
|
def test_custom_diffusion_processors(self):
|
|
# enable deterministic behavior for gradient checkpointing
|
|
init_dict, inputs_dict = self.prepare_init_args_and_inputs_for_common()
|
|
|
|
init_dict["block_out_channels"] = (16, 32)
|
|
init_dict["attention_head_dim"] = (8, 16)
|
|
|
|
model = self.model_class(**init_dict)
|
|
model.to(torch_device)
|
|
|
|
with torch.no_grad():
|
|
sample1 = model(**inputs_dict).sample
|
|
|
|
custom_diffusion_attn_procs = create_custom_diffusion_layers(model, mock_weights=False)
|
|
|
|
# make sure we can set a list of attention processors
|
|
model.set_attn_processor(custom_diffusion_attn_procs)
|
|
model.to(torch_device)
|
|
|
|
# test that attn processors can be set to itself
|
|
model.set_attn_processor(model.attn_processors)
|
|
|
|
with torch.no_grad():
|
|
sample2 = model(**inputs_dict).sample
|
|
|
|
assert (sample1 - sample2).abs().max() < 3e-3
|
|
|
|
def test_custom_diffusion_save_load(self):
|
|
# enable deterministic behavior for gradient checkpointing
|
|
init_dict, inputs_dict = self.prepare_init_args_and_inputs_for_common()
|
|
|
|
init_dict["block_out_channels"] = (16, 32)
|
|
init_dict["attention_head_dim"] = (8, 16)
|
|
|
|
torch.manual_seed(0)
|
|
model = self.model_class(**init_dict)
|
|
model.to(torch_device)
|
|
|
|
with torch.no_grad():
|
|
old_sample = model(**inputs_dict).sample
|
|
|
|
custom_diffusion_attn_procs = create_custom_diffusion_layers(model, mock_weights=False)
|
|
model.set_attn_processor(custom_diffusion_attn_procs)
|
|
|
|
with torch.no_grad():
|
|
sample = model(**inputs_dict).sample
|
|
|
|
with tempfile.TemporaryDirectory() as tmpdirname:
|
|
model.save_attn_procs(tmpdirname, safe_serialization=False)
|
|
self.assertTrue(os.path.isfile(os.path.join(tmpdirname, "pytorch_custom_diffusion_weights.bin")))
|
|
torch.manual_seed(0)
|
|
new_model = self.model_class(**init_dict)
|
|
new_model.load_attn_procs(tmpdirname, weight_name="pytorch_custom_diffusion_weights.bin")
|
|
new_model.to(torch_device)
|
|
|
|
with torch.no_grad():
|
|
new_sample = new_model(**inputs_dict).sample
|
|
|
|
assert (sample - new_sample).abs().max() < 1e-4
|
|
|
|
# custom diffusion and no custom diffusion should be the same
|
|
assert (sample - old_sample).abs().max() < 3e-3
|
|
|
|
@unittest.skipIf(
|
|
torch_device != "cuda" or not is_xformers_available(),
|
|
reason="XFormers attention is only available with CUDA and `xformers` installed",
|
|
)
|
|
def test_custom_diffusion_xformers_on_off(self):
|
|
# enable deterministic behavior for gradient checkpointing
|
|
init_dict, inputs_dict = self.prepare_init_args_and_inputs_for_common()
|
|
|
|
init_dict["block_out_channels"] = (16, 32)
|
|
init_dict["attention_head_dim"] = (8, 16)
|
|
|
|
torch.manual_seed(0)
|
|
model = self.model_class(**init_dict)
|
|
model.to(torch_device)
|
|
custom_diffusion_attn_procs = create_custom_diffusion_layers(model, mock_weights=False)
|
|
model.set_attn_processor(custom_diffusion_attn_procs)
|
|
|
|
# default
|
|
with torch.no_grad():
|
|
sample = model(**inputs_dict).sample
|
|
|
|
model.enable_xformers_memory_efficient_attention()
|
|
on_sample = model(**inputs_dict).sample
|
|
|
|
model.disable_xformers_memory_efficient_attention()
|
|
off_sample = model(**inputs_dict).sample
|
|
|
|
assert (sample - on_sample).abs().max() < 1e-4
|
|
assert (sample - off_sample).abs().max() < 1e-4
|
|
|
|
def test_pickle(self):
|
|
# enable deterministic behavior for gradient checkpointing
|
|
init_dict, inputs_dict = self.prepare_init_args_and_inputs_for_common()
|
|
|
|
init_dict["block_out_channels"] = (16, 32)
|
|
init_dict["attention_head_dim"] = (8, 16)
|
|
|
|
model = self.model_class(**init_dict)
|
|
model.to(torch_device)
|
|
|
|
with torch.no_grad():
|
|
sample = model(**inputs_dict).sample
|
|
|
|
sample_copy = copy.copy(sample)
|
|
|
|
assert (sample - sample_copy).abs().max() < 1e-4
|
|
|
|
def test_asymmetrical_unet(self):
|
|
init_dict, inputs_dict = self.prepare_init_args_and_inputs_for_common()
|
|
# Add asymmetry to configs
|
|
init_dict["transformer_layers_per_block"] = [[3, 2], 1]
|
|
init_dict["reverse_transformer_layers_per_block"] = [[3, 4], 1]
|
|
|
|
torch.manual_seed(0)
|
|
model = self.model_class(**init_dict)
|
|
model.to(torch_device)
|
|
|
|
output = model(**inputs_dict).sample
|
|
expected_shape = inputs_dict["sample"].shape
|
|
|
|
# Check if input and output shapes are the same
|
|
self.assertEqual(output.shape, expected_shape, "Input and output shapes do not match")
|
|
|
|
def test_ip_adapter(self):
|
|
init_dict, inputs_dict = self.prepare_init_args_and_inputs_for_common()
|
|
|
|
init_dict["block_out_channels"] = (16, 32)
|
|
init_dict["attention_head_dim"] = (8, 16)
|
|
|
|
model = self.model_class(**init_dict)
|
|
model.to(torch_device)
|
|
|
|
# forward pass without ip-adapter
|
|
with torch.no_grad():
|
|
sample1 = model(**inputs_dict).sample
|
|
|
|
# update inputs_dict for ip-adapter
|
|
batch_size = inputs_dict["encoder_hidden_states"].shape[0]
|
|
# for ip-adapter image_embeds has shape [batch_size, num_image, embed_dim]
|
|
image_embeds = floats_tensor((batch_size, 1, model.config.cross_attention_dim)).to(torch_device)
|
|
inputs_dict["added_cond_kwargs"] = {"image_embeds": [image_embeds]}
|
|
|
|
# make ip_adapter_1 and ip_adapter_2
|
|
ip_adapter_1 = create_ip_adapter_state_dict(model)
|
|
|
|
image_proj_state_dict_2 = {k: w + 1.0 for k, w in ip_adapter_1["image_proj"].items()}
|
|
cross_attn_state_dict_2 = {k: w + 1.0 for k, w in ip_adapter_1["ip_adapter"].items()}
|
|
ip_adapter_2 = {}
|
|
ip_adapter_2.update({"image_proj": image_proj_state_dict_2, "ip_adapter": cross_attn_state_dict_2})
|
|
|
|
# forward pass ip_adapter_1
|
|
model._load_ip_adapter_weights([ip_adapter_1])
|
|
assert model.config.encoder_hid_dim_type == "ip_image_proj"
|
|
assert model.encoder_hid_proj is not None
|
|
assert model.down_blocks[0].attentions[0].transformer_blocks[0].attn2.processor.__class__.__name__ in (
|
|
"IPAdapterAttnProcessor",
|
|
"IPAdapterAttnProcessor2_0",
|
|
)
|
|
with torch.no_grad():
|
|
sample2 = model(**inputs_dict).sample
|
|
|
|
# forward pass with ip_adapter_2
|
|
model._load_ip_adapter_weights([ip_adapter_2])
|
|
with torch.no_grad():
|
|
sample3 = model(**inputs_dict).sample
|
|
|
|
# forward pass with ip_adapter_1 again
|
|
model._load_ip_adapter_weights([ip_adapter_1])
|
|
with torch.no_grad():
|
|
sample4 = model(**inputs_dict).sample
|
|
|
|
# forward pass with multiple ip-adapters and multiple images
|
|
model._load_ip_adapter_weights([ip_adapter_1, ip_adapter_2])
|
|
# set the scale for ip_adapter_2 to 0 so that result should be same as only load ip_adapter_1
|
|
for attn_processor in model.attn_processors.values():
|
|
if isinstance(attn_processor, (IPAdapterAttnProcessor, IPAdapterAttnProcessor2_0)):
|
|
attn_processor.scale = [1, 0]
|
|
image_embeds_multi = image_embeds.repeat(1, 2, 1)
|
|
inputs_dict["added_cond_kwargs"] = {"image_embeds": [image_embeds_multi, image_embeds_multi]}
|
|
with torch.no_grad():
|
|
sample5 = model(**inputs_dict).sample
|
|
|
|
# forward pass with single ip-adapter & single image when image_embeds is not a list and a 2-d tensor
|
|
image_embeds = image_embeds.squeeze(1)
|
|
inputs_dict["added_cond_kwargs"] = {"image_embeds": image_embeds}
|
|
|
|
model._load_ip_adapter_weights(ip_adapter_1)
|
|
with torch.no_grad():
|
|
sample6 = model(**inputs_dict).sample
|
|
|
|
assert not sample1.allclose(sample2, atol=1e-4, rtol=1e-4)
|
|
assert not sample2.allclose(sample3, atol=1e-4, rtol=1e-4)
|
|
assert sample2.allclose(sample4, atol=1e-4, rtol=1e-4)
|
|
assert sample2.allclose(sample5, atol=1e-4, rtol=1e-4)
|
|
assert sample2.allclose(sample6, atol=1e-4, rtol=1e-4)
|
|
|
|
def test_ip_adapter_plus(self):
|
|
init_dict, inputs_dict = self.prepare_init_args_and_inputs_for_common()
|
|
|
|
init_dict["block_out_channels"] = (16, 32)
|
|
init_dict["attention_head_dim"] = (8, 16)
|
|
|
|
model = self.model_class(**init_dict)
|
|
model.to(torch_device)
|
|
|
|
# forward pass without ip-adapter
|
|
with torch.no_grad():
|
|
sample1 = model(**inputs_dict).sample
|
|
|
|
# update inputs_dict for ip-adapter
|
|
batch_size = inputs_dict["encoder_hidden_states"].shape[0]
|
|
# for ip-adapter-plus image_embeds has shape [batch_size, num_image, sequence_length, embed_dim]
|
|
image_embeds = floats_tensor((batch_size, 1, 1, model.config.cross_attention_dim)).to(torch_device)
|
|
inputs_dict["added_cond_kwargs"] = {"image_embeds": [image_embeds]}
|
|
|
|
# make ip_adapter_1 and ip_adapter_2
|
|
ip_adapter_1 = create_ip_adapter_plus_state_dict(model)
|
|
|
|
image_proj_state_dict_2 = {k: w + 1.0 for k, w in ip_adapter_1["image_proj"].items()}
|
|
cross_attn_state_dict_2 = {k: w + 1.0 for k, w in ip_adapter_1["ip_adapter"].items()}
|
|
ip_adapter_2 = {}
|
|
ip_adapter_2.update({"image_proj": image_proj_state_dict_2, "ip_adapter": cross_attn_state_dict_2})
|
|
|
|
# forward pass ip_adapter_1
|
|
model._load_ip_adapter_weights([ip_adapter_1])
|
|
assert model.config.encoder_hid_dim_type == "ip_image_proj"
|
|
assert model.encoder_hid_proj is not None
|
|
assert model.down_blocks[0].attentions[0].transformer_blocks[0].attn2.processor.__class__.__name__ in (
|
|
"IPAdapterAttnProcessor",
|
|
"IPAdapterAttnProcessor2_0",
|
|
)
|
|
with torch.no_grad():
|
|
sample2 = model(**inputs_dict).sample
|
|
|
|
# forward pass with ip_adapter_2
|
|
model._load_ip_adapter_weights([ip_adapter_2])
|
|
with torch.no_grad():
|
|
sample3 = model(**inputs_dict).sample
|
|
|
|
# forward pass with ip_adapter_1 again
|
|
model._load_ip_adapter_weights([ip_adapter_1])
|
|
with torch.no_grad():
|
|
sample4 = model(**inputs_dict).sample
|
|
|
|
# forward pass with multiple ip-adapters and multiple images
|
|
model._load_ip_adapter_weights([ip_adapter_1, ip_adapter_2])
|
|
# set the scale for ip_adapter_2 to 0 so that result should be same as only load ip_adapter_1
|
|
for attn_processor in model.attn_processors.values():
|
|
if isinstance(attn_processor, (IPAdapterAttnProcessor, IPAdapterAttnProcessor2_0)):
|
|
attn_processor.scale = [1, 0]
|
|
image_embeds_multi = image_embeds.repeat(1, 2, 1, 1)
|
|
inputs_dict["added_cond_kwargs"] = {"image_embeds": [image_embeds_multi, image_embeds_multi]}
|
|
with torch.no_grad():
|
|
sample5 = model(**inputs_dict).sample
|
|
|
|
# forward pass with single ip-adapter & single image when image_embeds is a 3-d tensor
|
|
image_embeds = image_embeds[:,].squeeze(1)
|
|
inputs_dict["added_cond_kwargs"] = {"image_embeds": image_embeds}
|
|
|
|
model._load_ip_adapter_weights(ip_adapter_1)
|
|
with torch.no_grad():
|
|
sample6 = model(**inputs_dict).sample
|
|
|
|
assert not sample1.allclose(sample2, atol=1e-4, rtol=1e-4)
|
|
assert not sample2.allclose(sample3, atol=1e-4, rtol=1e-4)
|
|
assert sample2.allclose(sample4, atol=1e-4, rtol=1e-4)
|
|
assert sample2.allclose(sample5, atol=1e-4, rtol=1e-4)
|
|
assert sample2.allclose(sample6, atol=1e-4, rtol=1e-4)
|
|
|
|
@parameterized.expand(
|
|
[
|
|
("hf-internal-testing/unet2d-sharded-dummy", None),
|
|
("hf-internal-testing/tiny-sd-unet-sharded-latest-format", "fp16"),
|
|
]
|
|
)
|
|
@require_torch_accelerator
|
|
def test_load_sharded_checkpoint_from_hub(self, repo_id, variant):
|
|
_, inputs_dict = self.prepare_init_args_and_inputs_for_common()
|
|
loaded_model = self.model_class.from_pretrained(repo_id, variant=variant)
|
|
loaded_model = loaded_model.to(torch_device)
|
|
new_output = loaded_model(**inputs_dict)
|
|
|
|
assert loaded_model
|
|
assert new_output.sample.shape == (4, 4, 16, 16)
|
|
|
|
@parameterized.expand(
|
|
[
|
|
("hf-internal-testing/unet2d-sharded-dummy-subfolder", None),
|
|
("hf-internal-testing/tiny-sd-unet-sharded-latest-format-subfolder", "fp16"),
|
|
]
|
|
)
|
|
@require_torch_accelerator
|
|
def test_load_sharded_checkpoint_from_hub_subfolder(self, repo_id, variant):
|
|
_, inputs_dict = self.prepare_init_args_and_inputs_for_common()
|
|
loaded_model = self.model_class.from_pretrained(repo_id, subfolder="unet", variant=variant)
|
|
loaded_model = loaded_model.to(torch_device)
|
|
new_output = loaded_model(**inputs_dict)
|
|
|
|
assert loaded_model
|
|
assert new_output.sample.shape == (4, 4, 16, 16)
|
|
|
|
@require_torch_accelerator
|
|
def test_load_sharded_checkpoint_from_hub_local(self):
|
|
_, inputs_dict = self.prepare_init_args_and_inputs_for_common()
|
|
ckpt_path = snapshot_download("hf-internal-testing/unet2d-sharded-dummy")
|
|
loaded_model = self.model_class.from_pretrained(ckpt_path, local_files_only=True)
|
|
loaded_model = loaded_model.to(torch_device)
|
|
new_output = loaded_model(**inputs_dict)
|
|
|
|
assert loaded_model
|
|
assert new_output.sample.shape == (4, 4, 16, 16)
|
|
|
|
@require_torch_accelerator
|
|
def test_load_sharded_checkpoint_from_hub_local_subfolder(self):
|
|
_, inputs_dict = self.prepare_init_args_and_inputs_for_common()
|
|
ckpt_path = snapshot_download("hf-internal-testing/unet2d-sharded-dummy-subfolder")
|
|
loaded_model = self.model_class.from_pretrained(ckpt_path, subfolder="unet", local_files_only=True)
|
|
loaded_model = loaded_model.to(torch_device)
|
|
new_output = loaded_model(**inputs_dict)
|
|
|
|
assert loaded_model
|
|
assert new_output.sample.shape == (4, 4, 16, 16)
|
|
|
|
@require_torch_accelerator
|
|
@parameterized.expand(
|
|
[
|
|
("hf-internal-testing/unet2d-sharded-dummy", None),
|
|
("hf-internal-testing/tiny-sd-unet-sharded-latest-format", "fp16"),
|
|
]
|
|
)
|
|
def test_load_sharded_checkpoint_device_map_from_hub(self, repo_id, variant):
|
|
_, inputs_dict = self.prepare_init_args_and_inputs_for_common()
|
|
loaded_model = self.model_class.from_pretrained(repo_id, variant=variant, device_map="auto")
|
|
new_output = loaded_model(**inputs_dict)
|
|
|
|
assert loaded_model
|
|
assert new_output.sample.shape == (4, 4, 16, 16)
|
|
|
|
@require_torch_accelerator
|
|
@parameterized.expand(
|
|
[
|
|
("hf-internal-testing/unet2d-sharded-dummy-subfolder", None),
|
|
("hf-internal-testing/tiny-sd-unet-sharded-latest-format-subfolder", "fp16"),
|
|
]
|
|
)
|
|
def test_load_sharded_checkpoint_device_map_from_hub_subfolder(self, repo_id, variant):
|
|
_, inputs_dict = self.prepare_init_args_and_inputs_for_common()
|
|
loaded_model = self.model_class.from_pretrained(repo_id, variant=variant, subfolder="unet", device_map="auto")
|
|
new_output = loaded_model(**inputs_dict)
|
|
|
|
assert loaded_model
|
|
assert new_output.sample.shape == (4, 4, 16, 16)
|
|
|
|
@require_torch_accelerator
|
|
def test_load_sharded_checkpoint_device_map_from_hub_local(self):
|
|
_, inputs_dict = self.prepare_init_args_and_inputs_for_common()
|
|
ckpt_path = snapshot_download("hf-internal-testing/unet2d-sharded-dummy")
|
|
loaded_model = self.model_class.from_pretrained(ckpt_path, local_files_only=True, device_map="auto")
|
|
new_output = loaded_model(**inputs_dict)
|
|
|
|
assert loaded_model
|
|
assert new_output.sample.shape == (4, 4, 16, 16)
|
|
|
|
@require_torch_accelerator
|
|
def test_load_sharded_checkpoint_device_map_from_hub_local_subfolder(self):
|
|
_, inputs_dict = self.prepare_init_args_and_inputs_for_common()
|
|
ckpt_path = snapshot_download("hf-internal-testing/unet2d-sharded-dummy-subfolder")
|
|
loaded_model = self.model_class.from_pretrained(
|
|
ckpt_path, local_files_only=True, subfolder="unet", device_map="auto"
|
|
)
|
|
new_output = loaded_model(**inputs_dict)
|
|
|
|
assert loaded_model
|
|
assert new_output.sample.shape == (4, 4, 16, 16)
|
|
|
|
@require_peft_backend
|
|
def test_load_attn_procs_raise_warning(self):
|
|
init_dict, inputs_dict = self.prepare_init_args_and_inputs_for_common()
|
|
model = self.model_class(**init_dict)
|
|
model.to(torch_device)
|
|
|
|
# forward pass without LoRA
|
|
with torch.no_grad():
|
|
non_lora_sample = model(**inputs_dict).sample
|
|
|
|
unet_lora_config = get_unet_lora_config()
|
|
model.add_adapter(unet_lora_config)
|
|
|
|
assert check_if_lora_correctly_set(model), "Lora not correctly set in UNet."
|
|
|
|
# forward pass with LoRA
|
|
with torch.no_grad():
|
|
lora_sample_1 = model(**inputs_dict).sample
|
|
|
|
with tempfile.TemporaryDirectory() as tmpdirname:
|
|
model.save_attn_procs(tmpdirname)
|
|
model.unload_lora()
|
|
|
|
with self.assertWarns(FutureWarning) as warning:
|
|
model.load_attn_procs(os.path.join(tmpdirname, "pytorch_lora_weights.safetensors"))
|
|
|
|
warning_message = str(warning.warnings[0].message)
|
|
assert "Using the `load_attn_procs()` method has been deprecated" in warning_message
|
|
|
|
# import to still check for the rest of the stuff.
|
|
assert check_if_lora_correctly_set(model), "Lora not correctly set in UNet."
|
|
|
|
with torch.no_grad():
|
|
lora_sample_2 = model(**inputs_dict).sample
|
|
|
|
assert not torch.allclose(non_lora_sample, lora_sample_1, atol=1e-4, rtol=1e-4), (
|
|
"LoRA injected UNet should produce different results."
|
|
)
|
|
assert torch.allclose(lora_sample_1, lora_sample_2, atol=1e-4, rtol=1e-4), (
|
|
"Loading from a saved checkpoint should produce identical results."
|
|
)
|
|
|
|
@require_peft_backend
|
|
def test_save_attn_procs_raise_warning(self):
|
|
init_dict, _ = self.prepare_init_args_and_inputs_for_common()
|
|
model = self.model_class(**init_dict)
|
|
model.to(torch_device)
|
|
|
|
unet_lora_config = get_unet_lora_config()
|
|
model.add_adapter(unet_lora_config)
|
|
|
|
assert check_if_lora_correctly_set(model), "Lora not correctly set in UNet."
|
|
|
|
with tempfile.TemporaryDirectory() as tmpdirname:
|
|
with self.assertWarns(FutureWarning) as warning:
|
|
model.save_attn_procs(tmpdirname)
|
|
|
|
warning_message = str(warning.warnings[0].message)
|
|
assert "Using the `save_attn_procs()` method has been deprecated" in warning_message
|
|
|
|
|
|
class UNet2DConditionModelCompileTests(TorchCompileTesterMixin, unittest.TestCase):
|
|
model_class = UNet2DConditionModel
|
|
|
|
def prepare_init_args_and_inputs_for_common(self):
|
|
return UNet2DConditionModelTests().prepare_init_args_and_inputs_for_common()
|
|
|
|
|
|
class UNet2DConditionModelLoRAHotSwapTests(LoraHotSwappingForModelTesterMixin, unittest.TestCase):
|
|
model_class = UNet2DConditionModel
|
|
|
|
def prepare_init_args_and_inputs_for_common(self):
|
|
return UNet2DConditionModelTests().prepare_init_args_and_inputs_for_common()
|
|
|
|
|
|
@slow
|
|
class UNet2DConditionModelIntegrationTests(unittest.TestCase):
|
|
def get_file_format(self, seed, shape):
|
|
return f"gaussian_noise_s={seed}_shape={'_'.join([str(s) for s in shape])}.npy"
|
|
|
|
def tearDown(self):
|
|
# clean up the VRAM after each test
|
|
super().tearDown()
|
|
gc.collect()
|
|
backend_empty_cache(torch_device)
|
|
|
|
def get_latents(self, seed=0, shape=(4, 4, 64, 64), fp16=False):
|
|
dtype = torch.float16 if fp16 else torch.float32
|
|
image = torch.from_numpy(load_hf_numpy(self.get_file_format(seed, shape))).to(torch_device).to(dtype)
|
|
return image
|
|
|
|
def get_unet_model(self, fp16=False, model_id="CompVis/stable-diffusion-v1-4"):
|
|
variant = "fp16" if fp16 else None
|
|
torch_dtype = torch.float16 if fp16 else torch.float32
|
|
|
|
model = UNet2DConditionModel.from_pretrained(
|
|
model_id, subfolder="unet", torch_dtype=torch_dtype, variant=variant
|
|
)
|
|
model.to(torch_device).eval()
|
|
|
|
return model
|
|
|
|
@require_torch_accelerator
|
|
def test_set_attention_slice_auto(self):
|
|
backend_empty_cache(torch_device)
|
|
backend_reset_max_memory_allocated(torch_device)
|
|
backend_reset_peak_memory_stats(torch_device)
|
|
|
|
unet = self.get_unet_model()
|
|
unet.set_attention_slice("auto")
|
|
|
|
latents = self.get_latents(33)
|
|
encoder_hidden_states = self.get_encoder_hidden_states(33)
|
|
timestep = 1
|
|
|
|
with torch.no_grad():
|
|
_ = unet(latents, timestep=timestep, encoder_hidden_states=encoder_hidden_states).sample
|
|
|
|
mem_bytes = backend_max_memory_allocated(torch_device)
|
|
|
|
assert mem_bytes < 5 * 10**9
|
|
|
|
@require_torch_accelerator
|
|
def test_set_attention_slice_max(self):
|
|
backend_empty_cache(torch_device)
|
|
backend_reset_max_memory_allocated(torch_device)
|
|
backend_reset_peak_memory_stats(torch_device)
|
|
|
|
unet = self.get_unet_model()
|
|
unet.set_attention_slice("max")
|
|
|
|
latents = self.get_latents(33)
|
|
encoder_hidden_states = self.get_encoder_hidden_states(33)
|
|
timestep = 1
|
|
|
|
with torch.no_grad():
|
|
_ = unet(latents, timestep=timestep, encoder_hidden_states=encoder_hidden_states).sample
|
|
|
|
mem_bytes = backend_max_memory_allocated(torch_device)
|
|
|
|
assert mem_bytes < 5 * 10**9
|
|
|
|
@require_torch_accelerator
|
|
def test_set_attention_slice_int(self):
|
|
backend_empty_cache(torch_device)
|
|
backend_reset_max_memory_allocated(torch_device)
|
|
backend_reset_peak_memory_stats(torch_device)
|
|
|
|
unet = self.get_unet_model()
|
|
unet.set_attention_slice(2)
|
|
|
|
latents = self.get_latents(33)
|
|
encoder_hidden_states = self.get_encoder_hidden_states(33)
|
|
timestep = 1
|
|
|
|
with torch.no_grad():
|
|
_ = unet(latents, timestep=timestep, encoder_hidden_states=encoder_hidden_states).sample
|
|
|
|
mem_bytes = backend_max_memory_allocated(torch_device)
|
|
|
|
assert mem_bytes < 5 * 10**9
|
|
|
|
@require_torch_accelerator
|
|
def test_set_attention_slice_list(self):
|
|
backend_empty_cache(torch_device)
|
|
backend_reset_max_memory_allocated(torch_device)
|
|
backend_reset_peak_memory_stats(torch_device)
|
|
|
|
# there are 32 sliceable layers
|
|
slice_list = 16 * [2, 3]
|
|
unet = self.get_unet_model()
|
|
unet.set_attention_slice(slice_list)
|
|
|
|
latents = self.get_latents(33)
|
|
encoder_hidden_states = self.get_encoder_hidden_states(33)
|
|
timestep = 1
|
|
|
|
with torch.no_grad():
|
|
_ = unet(latents, timestep=timestep, encoder_hidden_states=encoder_hidden_states).sample
|
|
|
|
mem_bytes = backend_max_memory_allocated(torch_device)
|
|
|
|
assert mem_bytes < 5 * 10**9
|
|
|
|
def get_encoder_hidden_states(self, seed=0, shape=(4, 77, 768), fp16=False):
|
|
dtype = torch.float16 if fp16 else torch.float32
|
|
hidden_states = torch.from_numpy(load_hf_numpy(self.get_file_format(seed, shape))).to(torch_device).to(dtype)
|
|
return hidden_states
|
|
|
|
@parameterized.expand(
|
|
[
|
|
# fmt: off
|
|
[33, 4, [-0.4424, 0.1510, -0.1937, 0.2118, 0.3746, -0.3957, 0.0160, -0.0435]],
|
|
[47, 0.55, [-0.1508, 0.0379, -0.3075, 0.2540, 0.3633, -0.0821, 0.1719, -0.0207]],
|
|
[21, 0.89, [-0.6479, 0.6364, -0.3464, 0.8697, 0.4443, -0.6289, -0.0091, 0.1778]],
|
|
[9, 1000, [0.8888, -0.5659, 0.5834, -0.7469, 1.1912, -0.3923, 1.1241, -0.4424]],
|
|
# fmt: on
|
|
]
|
|
)
|
|
@require_torch_accelerator_with_fp16
|
|
def test_compvis_sd_v1_4(self, seed, timestep, expected_slice):
|
|
model = self.get_unet_model(model_id="CompVis/stable-diffusion-v1-4")
|
|
latents = self.get_latents(seed)
|
|
encoder_hidden_states = self.get_encoder_hidden_states(seed)
|
|
|
|
timestep = torch.tensor([timestep], dtype=torch.long, device=torch_device)
|
|
|
|
with torch.no_grad():
|
|
sample = model(latents, timestep=timestep, encoder_hidden_states=encoder_hidden_states).sample
|
|
|
|
assert sample.shape == latents.shape
|
|
|
|
output_slice = sample[-1, -2:, -2:, :2].flatten().float().cpu()
|
|
expected_output_slice = torch.tensor(expected_slice)
|
|
|
|
assert torch_all_close(output_slice, expected_output_slice, atol=1e-3)
|
|
|
|
@parameterized.expand(
|
|
[
|
|
# fmt: off
|
|
[83, 4, [-0.2323, -0.1304, 0.0813, -0.3093, -0.0919, -0.1571, -0.1125, -0.5806]],
|
|
[17, 0.55, [-0.0831, -0.2443, 0.0901, -0.0919, 0.3396, 0.0103, -0.3743, 0.0701]],
|
|
[8, 0.89, [-0.4863, 0.0859, 0.0875, -0.1658, 0.9199, -0.0114, 0.4839, 0.4639]],
|
|
[3, 1000, [-0.5649, 0.2402, -0.5518, 0.1248, 1.1328, -0.2443, -0.0325, -1.0078]],
|
|
# fmt: on
|
|
]
|
|
)
|
|
@require_torch_accelerator_with_fp16
|
|
def test_compvis_sd_v1_4_fp16(self, seed, timestep, expected_slice):
|
|
model = self.get_unet_model(model_id="CompVis/stable-diffusion-v1-4", fp16=True)
|
|
latents = self.get_latents(seed, fp16=True)
|
|
encoder_hidden_states = self.get_encoder_hidden_states(seed, fp16=True)
|
|
|
|
timestep = torch.tensor([timestep], dtype=torch.long, device=torch_device)
|
|
|
|
with torch.no_grad():
|
|
sample = model(latents, timestep=timestep, encoder_hidden_states=encoder_hidden_states).sample
|
|
|
|
assert sample.shape == latents.shape
|
|
|
|
output_slice = sample[-1, -2:, -2:, :2].flatten().float().cpu()
|
|
expected_output_slice = torch.tensor(expected_slice)
|
|
|
|
assert torch_all_close(output_slice, expected_output_slice, atol=5e-3)
|
|
|
|
@parameterized.expand(
|
|
[
|
|
# fmt: off
|
|
[33, 4, [-0.4430, 0.1570, -0.1867, 0.2376, 0.3205, -0.3681, 0.0525, -0.0722]],
|
|
[47, 0.55, [-0.1415, 0.0129, -0.3136, 0.2257, 0.3430, -0.0536, 0.2114, -0.0436]],
|
|
[21, 0.89, [-0.7091, 0.6664, -0.3643, 0.9032, 0.4499, -0.6541, 0.0139, 0.1750]],
|
|
[9, 1000, [0.8878, -0.5659, 0.5844, -0.7442, 1.1883, -0.3927, 1.1192, -0.4423]],
|
|
# fmt: on
|
|
]
|
|
)
|
|
@require_torch_accelerator
|
|
@skip_mps
|
|
def test_compvis_sd_v1_5(self, seed, timestep, expected_slice):
|
|
model = self.get_unet_model(model_id="stable-diffusion-v1-5/stable-diffusion-v1-5")
|
|
latents = self.get_latents(seed)
|
|
encoder_hidden_states = self.get_encoder_hidden_states(seed)
|
|
|
|
timestep = torch.tensor([timestep], dtype=torch.long, device=torch_device)
|
|
|
|
with torch.no_grad():
|
|
sample = model(latents, timestep=timestep, encoder_hidden_states=encoder_hidden_states).sample
|
|
|
|
assert sample.shape == latents.shape
|
|
|
|
output_slice = sample[-1, -2:, -2:, :2].flatten().float().cpu()
|
|
expected_output_slice = torch.tensor(expected_slice)
|
|
|
|
assert torch_all_close(output_slice, expected_output_slice, atol=1e-3)
|
|
|
|
@parameterized.expand(
|
|
[
|
|
# fmt: off
|
|
[83, 4, [-0.2695, -0.1669, 0.0073, -0.3181, -0.1187, -0.1676, -0.1395, -0.5972]],
|
|
[17, 0.55, [-0.1290, -0.2588, 0.0551, -0.0916, 0.3286, 0.0238, -0.3669, 0.0322]],
|
|
[8, 0.89, [-0.5283, 0.1198, 0.0870, -0.1141, 0.9189, -0.0150, 0.5474, 0.4319]],
|
|
[3, 1000, [-0.5601, 0.2411, -0.5435, 0.1268, 1.1338, -0.2427, -0.0280, -1.0020]],
|
|
# fmt: on
|
|
]
|
|
)
|
|
@require_torch_accelerator_with_fp16
|
|
def test_compvis_sd_v1_5_fp16(self, seed, timestep, expected_slice):
|
|
model = self.get_unet_model(model_id="stable-diffusion-v1-5/stable-diffusion-v1-5", fp16=True)
|
|
latents = self.get_latents(seed, fp16=True)
|
|
encoder_hidden_states = self.get_encoder_hidden_states(seed, fp16=True)
|
|
|
|
timestep = torch.tensor([timestep], dtype=torch.long, device=torch_device)
|
|
|
|
with torch.no_grad():
|
|
sample = model(latents, timestep=timestep, encoder_hidden_states=encoder_hidden_states).sample
|
|
|
|
assert sample.shape == latents.shape
|
|
|
|
output_slice = sample[-1, -2:, -2:, :2].flatten().float().cpu()
|
|
expected_output_slice = torch.tensor(expected_slice)
|
|
|
|
assert torch_all_close(output_slice, expected_output_slice, atol=5e-3)
|
|
|
|
@parameterized.expand(
|
|
[
|
|
# fmt: off
|
|
[33, 4, [-0.7639, 0.0106, -0.1615, -0.3487, -0.0423, -0.7972, 0.0085, -0.4858]],
|
|
[47, 0.55, [-0.6564, 0.0795, -1.9026, -0.6258, 1.8235, 1.2056, 1.2169, 0.9073]],
|
|
[21, 0.89, [0.0327, 0.4399, -0.6358, 0.3417, 0.4120, -0.5621, -0.0397, -1.0430]],
|
|
[9, 1000, [0.1600, 0.7303, -1.0556, -0.3515, -0.7440, -1.2037, -1.8149, -1.8931]],
|
|
# fmt: on
|
|
]
|
|
)
|
|
@require_torch_accelerator
|
|
@skip_mps
|
|
def test_compvis_sd_inpaint(self, seed, timestep, expected_slice):
|
|
model = self.get_unet_model(model_id="stable-diffusion-v1-5/stable-diffusion-inpainting")
|
|
latents = self.get_latents(seed, shape=(4, 9, 64, 64))
|
|
encoder_hidden_states = self.get_encoder_hidden_states(seed)
|
|
|
|
timestep = torch.tensor([timestep], dtype=torch.long, device=torch_device)
|
|
|
|
with torch.no_grad():
|
|
sample = model(latents, timestep=timestep, encoder_hidden_states=encoder_hidden_states).sample
|
|
|
|
assert sample.shape == (4, 4, 64, 64)
|
|
|
|
output_slice = sample[-1, -2:, -2:, :2].flatten().float().cpu()
|
|
expected_output_slice = torch.tensor(expected_slice)
|
|
|
|
assert torch_all_close(output_slice, expected_output_slice, atol=3e-3)
|
|
|
|
@parameterized.expand(
|
|
[
|
|
# fmt: off
|
|
[83, 4, [-0.1047, -1.7227, 0.1067, 0.0164, -0.5698, -0.4172, -0.1388, 1.1387]],
|
|
[17, 0.55, [0.0975, -0.2856, -0.3508, -0.4600, 0.3376, 0.2930, -0.2747, -0.7026]],
|
|
[8, 0.89, [-0.0952, 0.0183, -0.5825, -0.1981, 0.1131, 0.4668, -0.0395, -0.3486]],
|
|
[3, 1000, [0.4790, 0.4949, -1.0732, -0.7158, 0.7959, -0.9478, 0.1105, -0.9741]],
|
|
# fmt: on
|
|
]
|
|
)
|
|
@require_torch_accelerator_with_fp16
|
|
def test_compvis_sd_inpaint_fp16(self, seed, timestep, expected_slice):
|
|
model = self.get_unet_model(model_id="stable-diffusion-v1-5/stable-diffusion-inpainting", fp16=True)
|
|
latents = self.get_latents(seed, shape=(4, 9, 64, 64), fp16=True)
|
|
encoder_hidden_states = self.get_encoder_hidden_states(seed, fp16=True)
|
|
|
|
timestep = torch.tensor([timestep], dtype=torch.long, device=torch_device)
|
|
|
|
with torch.no_grad():
|
|
sample = model(latents, timestep=timestep, encoder_hidden_states=encoder_hidden_states).sample
|
|
|
|
assert sample.shape == (4, 4, 64, 64)
|
|
|
|
output_slice = sample[-1, -2:, -2:, :2].flatten().float().cpu()
|
|
expected_output_slice = torch.tensor(expected_slice)
|
|
|
|
assert torch_all_close(output_slice, expected_output_slice, atol=5e-3)
|
|
|
|
@parameterized.expand(
|
|
[
|
|
# fmt: off
|
|
[83, 4, [0.1514, 0.0807, 0.1624, 0.1016, -0.1896, 0.0263, 0.0677, 0.2310]],
|
|
[17, 0.55, [0.1164, -0.0216, 0.0170, 0.1589, -0.3120, 0.1005, -0.0581, -0.1458]],
|
|
[8, 0.89, [-0.1758, -0.0169, 0.1004, -0.1411, 0.1312, 0.1103, -0.1996, 0.2139]],
|
|
[3, 1000, [0.1214, 0.0352, -0.0731, -0.1562, -0.0994, -0.0906, -0.2340, -0.0539]],
|
|
# fmt: on
|
|
]
|
|
)
|
|
@require_torch_accelerator_with_fp16
|
|
def test_stabilityai_sd_v2_fp16(self, seed, timestep, expected_slice):
|
|
model = self.get_unet_model(model_id="stabilityai/stable-diffusion-2", fp16=True)
|
|
latents = self.get_latents(seed, shape=(4, 4, 96, 96), fp16=True)
|
|
encoder_hidden_states = self.get_encoder_hidden_states(seed, shape=(4, 77, 1024), fp16=True)
|
|
|
|
timestep = torch.tensor([timestep], dtype=torch.long, device=torch_device)
|
|
|
|
with torch.no_grad():
|
|
sample = model(latents, timestep=timestep, encoder_hidden_states=encoder_hidden_states).sample
|
|
|
|
assert sample.shape == latents.shape
|
|
|
|
output_slice = sample[-1, -2:, -2:, :2].flatten().float().cpu()
|
|
expected_output_slice = torch.tensor(expected_slice)
|
|
|
|
assert torch_all_close(output_slice, expected_output_slice, atol=5e-3)
|