mirror of
https://github.com/huggingface/diffusers.git
synced 2026-01-29 07:22:12 +03:00
148 lines
4.9 KiB
Python
148 lines
4.9 KiB
Python
# Copyright 2025 HuggingFace Inc.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
|
|
import sys
|
|
import unittest
|
|
|
|
import torch
|
|
from transformers import AutoTokenizer, T5EncoderModel
|
|
|
|
from diffusers import (
|
|
AutoencoderKLLTXVideo,
|
|
FlowMatchEulerDiscreteScheduler,
|
|
LTXPipeline,
|
|
LTXVideoTransformer3DModel,
|
|
)
|
|
|
|
from ..testing_utils import floats_tensor, require_peft_backend
|
|
|
|
|
|
sys.path.append(".")
|
|
|
|
from .utils import PeftLoraLoaderMixinTests # noqa: E402
|
|
|
|
|
|
@require_peft_backend
|
|
class LTXVideoLoRATests(unittest.TestCase, PeftLoraLoaderMixinTests):
|
|
pipeline_class = LTXPipeline
|
|
scheduler_cls = FlowMatchEulerDiscreteScheduler
|
|
scheduler_kwargs = {}
|
|
|
|
transformer_kwargs = {
|
|
"in_channels": 8,
|
|
"out_channels": 8,
|
|
"patch_size": 1,
|
|
"patch_size_t": 1,
|
|
"num_attention_heads": 4,
|
|
"attention_head_dim": 8,
|
|
"cross_attention_dim": 32,
|
|
"num_layers": 1,
|
|
"caption_channels": 32,
|
|
}
|
|
transformer_cls = LTXVideoTransformer3DModel
|
|
vae_kwargs = {
|
|
"in_channels": 3,
|
|
"out_channels": 3,
|
|
"latent_channels": 8,
|
|
"block_out_channels": (8, 8, 8, 8),
|
|
"decoder_block_out_channels": (8, 8, 8, 8),
|
|
"layers_per_block": (1, 1, 1, 1, 1),
|
|
"decoder_layers_per_block": (1, 1, 1, 1, 1),
|
|
"spatio_temporal_scaling": (True, True, False, False),
|
|
"decoder_spatio_temporal_scaling": (True, True, False, False),
|
|
"decoder_inject_noise": (False, False, False, False, False),
|
|
"upsample_residual": (False, False, False, False),
|
|
"upsample_factor": (1, 1, 1, 1),
|
|
"timestep_conditioning": False,
|
|
"patch_size": 1,
|
|
"patch_size_t": 1,
|
|
"encoder_causal": True,
|
|
"decoder_causal": False,
|
|
}
|
|
vae_cls = AutoencoderKLLTXVideo
|
|
tokenizer_cls, tokenizer_id = AutoTokenizer, "hf-internal-testing/tiny-random-t5"
|
|
text_encoder_cls, text_encoder_id = T5EncoderModel, "hf-internal-testing/tiny-random-t5"
|
|
|
|
text_encoder_target_modules = ["q", "k", "v", "o"]
|
|
|
|
@property
|
|
def output_shape(self):
|
|
return (1, 9, 32, 32, 3)
|
|
|
|
def get_dummy_inputs(self, with_generator=True):
|
|
batch_size = 1
|
|
sequence_length = 16
|
|
num_channels = 8
|
|
num_frames = 9
|
|
num_latent_frames = 3 # (num_frames - 1) // temporal_compression_ratio + 1
|
|
latent_height = 8
|
|
latent_width = 8
|
|
|
|
generator = torch.manual_seed(0)
|
|
noise = floats_tensor((batch_size, num_latent_frames, num_channels, latent_height, latent_width))
|
|
input_ids = torch.randint(1, sequence_length, size=(batch_size, sequence_length), generator=generator)
|
|
|
|
pipeline_inputs = {
|
|
"prompt": "dance monkey",
|
|
"num_frames": num_frames,
|
|
"num_inference_steps": 4,
|
|
"guidance_scale": 6.0,
|
|
"height": 32,
|
|
"width": 32,
|
|
"max_sequence_length": sequence_length,
|
|
"output_type": "np",
|
|
}
|
|
if with_generator:
|
|
pipeline_inputs.update({"generator": generator})
|
|
|
|
return noise, input_ids, pipeline_inputs
|
|
|
|
def test_simple_inference_with_text_lora_denoiser_fused_multi(self):
|
|
super().test_simple_inference_with_text_lora_denoiser_fused_multi(expected_atol=9e-3)
|
|
|
|
def test_simple_inference_with_text_denoiser_lora_unfused(self):
|
|
super().test_simple_inference_with_text_denoiser_lora_unfused(expected_atol=9e-3)
|
|
|
|
@unittest.skip("Not supported in LTXVideo.")
|
|
def test_simple_inference_with_text_denoiser_block_scale(self):
|
|
pass
|
|
|
|
@unittest.skip("Not supported in LTXVideo.")
|
|
def test_simple_inference_with_text_denoiser_block_scale_for_all_dict_options(self):
|
|
pass
|
|
|
|
@unittest.skip("Not supported in LTXVideo.")
|
|
def test_modify_padding_mode(self):
|
|
pass
|
|
|
|
@unittest.skip("Text encoder LoRA is not supported in LTXVideo.")
|
|
def test_simple_inference_with_partial_text_lora(self):
|
|
pass
|
|
|
|
@unittest.skip("Text encoder LoRA is not supported in LTXVideo.")
|
|
def test_simple_inference_with_text_lora(self):
|
|
pass
|
|
|
|
@unittest.skip("Text encoder LoRA is not supported in LTXVideo.")
|
|
def test_simple_inference_with_text_lora_and_scale(self):
|
|
pass
|
|
|
|
@unittest.skip("Text encoder LoRA is not supported in LTXVideo.")
|
|
def test_simple_inference_with_text_lora_fused(self):
|
|
pass
|
|
|
|
@unittest.skip("Text encoder LoRA is not supported in LTXVideo.")
|
|
def test_simple_inference_with_text_lora_save_load(self):
|
|
pass
|