mirror of
https://github.com/huggingface/diffusers.git
synced 2026-01-29 07:22:12 +03:00
* login * more logins * uploads * missed login * another missed login * downloads * examples and more logins * fix * setup * Apply style fixes * fix * Apply style fixes
1439 lines
58 KiB
Python
1439 lines
58 KiB
Python
#!/usr/bin/env python
|
|
# coding=utf-8
|
|
# Copyright 2025 The HuggingFace Inc. team. All rights reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
"""Script to train a consistency model from scratch via (improved) consistency training."""
|
|
|
|
import argparse
|
|
import gc
|
|
import logging
|
|
import math
|
|
import os
|
|
import shutil
|
|
from datetime import timedelta
|
|
from pathlib import Path
|
|
|
|
import accelerate
|
|
import datasets
|
|
import numpy as np
|
|
import torch
|
|
from accelerate import Accelerator, InitProcessGroupKwargs
|
|
from accelerate.logging import get_logger
|
|
from accelerate.utils import ProjectConfiguration, set_seed
|
|
from datasets import load_dataset
|
|
from huggingface_hub import create_repo, upload_folder
|
|
from packaging import version
|
|
from torchvision import transforms
|
|
from tqdm.auto import tqdm
|
|
|
|
import diffusers
|
|
from diffusers import (
|
|
CMStochasticIterativeScheduler,
|
|
ConsistencyModelPipeline,
|
|
UNet2DModel,
|
|
)
|
|
from diffusers.optimization import get_scheduler
|
|
from diffusers.training_utils import EMAModel, resolve_interpolation_mode
|
|
from diffusers.utils import is_tensorboard_available, is_wandb_available
|
|
from diffusers.utils.import_utils import is_xformers_available
|
|
from diffusers.utils.torch_utils import is_compiled_module
|
|
|
|
|
|
if is_wandb_available():
|
|
import wandb
|
|
|
|
|
|
logger = get_logger(__name__, log_level="INFO")
|
|
|
|
|
|
def _extract_into_tensor(arr, timesteps, broadcast_shape):
|
|
"""
|
|
Extract values from a 1-D numpy array for a batch of indices.
|
|
|
|
:param arr: the 1-D numpy array.
|
|
:param timesteps: a tensor of indices into the array to extract.
|
|
:param broadcast_shape: a larger shape of K dimensions with the batch
|
|
dimension equal to the length of timesteps.
|
|
:return: a tensor of shape [batch_size, 1, ...] where the shape has K dims.
|
|
"""
|
|
if not isinstance(arr, torch.Tensor):
|
|
arr = torch.from_numpy(arr)
|
|
res = arr[timesteps].float().to(timesteps.device)
|
|
while len(res.shape) < len(broadcast_shape):
|
|
res = res[..., None]
|
|
return res.expand(broadcast_shape)
|
|
|
|
|
|
def append_dims(x, target_dims):
|
|
"""Appends dimensions to the end of a tensor until it has target_dims dimensions."""
|
|
dims_to_append = target_dims - x.ndim
|
|
if dims_to_append < 0:
|
|
raise ValueError(f"input has {x.ndim} dims but target_dims is {target_dims}, which is less")
|
|
return x[(...,) + (None,) * dims_to_append]
|
|
|
|
|
|
def extract_into_tensor(a, t, x_shape):
|
|
b, *_ = t.shape
|
|
out = a.gather(-1, t)
|
|
return out.reshape(b, *((1,) * (len(x_shape) - 1)))
|
|
|
|
|
|
def get_discretization_steps(global_step: int, max_train_steps: int, s_0: int = 10, s_1: int = 1280, constant=False):
|
|
"""
|
|
Calculates the current discretization steps at global step k using the discretization curriculum N(k).
|
|
"""
|
|
if constant:
|
|
return s_0 + 1
|
|
|
|
k_prime = math.floor(max_train_steps / (math.log2(math.floor(s_1 / s_0)) + 1))
|
|
num_discretization_steps = min(s_0 * 2 ** math.floor(global_step / k_prime), s_1) + 1
|
|
|
|
return num_discretization_steps
|
|
|
|
|
|
def get_skip_steps(global_step, initial_skip: int = 1):
|
|
# Currently only support constant skip curriculum.
|
|
return initial_skip
|
|
|
|
|
|
def get_karras_sigmas(
|
|
num_discretization_steps: int,
|
|
sigma_min: float = 0.002,
|
|
sigma_max: float = 80.0,
|
|
rho: float = 7.0,
|
|
dtype=torch.float32,
|
|
):
|
|
"""
|
|
Calculates the Karras sigmas timestep discretization of [sigma_min, sigma_max].
|
|
"""
|
|
ramp = np.linspace(0, 1, num_discretization_steps)
|
|
min_inv_rho = sigma_min ** (1 / rho)
|
|
max_inv_rho = sigma_max ** (1 / rho)
|
|
sigmas = (max_inv_rho + ramp * (min_inv_rho - max_inv_rho)) ** rho
|
|
# Make sure sigmas are in increasing rather than decreasing order (see section 2 of the iCT paper)
|
|
sigmas = sigmas[::-1].copy()
|
|
sigmas = torch.from_numpy(sigmas).to(dtype=dtype)
|
|
return sigmas
|
|
|
|
|
|
def get_discretized_lognormal_weights(noise_levels: torch.Tensor, p_mean: float = -1.1, p_std: float = 2.0):
|
|
"""
|
|
Calculates the unnormalized weights for a 1D array of noise level sigma_i based on the discretized lognormal"
|
|
" distribution used in the iCT paper (given in Equation 10).
|
|
"""
|
|
upper_prob = torch.special.erf((torch.log(noise_levels[1:]) - p_mean) / (math.sqrt(2) * p_std))
|
|
lower_prob = torch.special.erf((torch.log(noise_levels[:-1]) - p_mean) / (math.sqrt(2) * p_std))
|
|
weights = upper_prob - lower_prob
|
|
return weights
|
|
|
|
|
|
def get_loss_weighting_schedule(noise_levels: torch.Tensor):
|
|
"""
|
|
Calculates the loss weighting schedule lambda given a set of noise levels.
|
|
"""
|
|
return 1.0 / (noise_levels[1:] - noise_levels[:-1])
|
|
|
|
|
|
def add_noise(original_samples: torch.Tensor, noise: torch.Tensor, timesteps: torch.Tensor):
|
|
# Make sure timesteps (Karras sigmas) have the same device and dtype as original_samples
|
|
sigmas = timesteps.to(device=original_samples.device, dtype=original_samples.dtype)
|
|
while len(sigmas.shape) < len(original_samples.shape):
|
|
sigmas = sigmas.unsqueeze(-1)
|
|
|
|
noisy_samples = original_samples + noise * sigmas
|
|
|
|
return noisy_samples
|
|
|
|
|
|
def get_noise_preconditioning(sigmas, noise_precond_type: str = "cm"):
|
|
"""
|
|
Calculates the noise preconditioning function c_noise, which is used to transform the raw Karras sigmas into the
|
|
timestep input for the U-Net.
|
|
"""
|
|
if noise_precond_type == "none":
|
|
return sigmas
|
|
elif noise_precond_type == "edm":
|
|
return 0.25 * torch.log(sigmas)
|
|
elif noise_precond_type == "cm":
|
|
return 1000 * 0.25 * torch.log(sigmas + 1e-44)
|
|
else:
|
|
raise ValueError(
|
|
f"Noise preconditioning type {noise_precond_type} is not current supported. Currently supported noise"
|
|
f" preconditioning types are `none` (which uses the sigmas as is), `edm`, and `cm`."
|
|
)
|
|
|
|
|
|
def get_input_preconditioning(sigmas, sigma_data=0.5, input_precond_type: str = "cm"):
|
|
"""
|
|
Calculates the input preconditioning factor c_in, which is used to scale the U-Net image input.
|
|
"""
|
|
if input_precond_type == "none":
|
|
return 1
|
|
elif input_precond_type == "cm":
|
|
return 1.0 / (sigmas**2 + sigma_data**2)
|
|
else:
|
|
raise ValueError(
|
|
f"Input preconditioning type {input_precond_type} is not current supported. Currently supported input"
|
|
f" preconditioning types are `none` (which uses a scaling factor of 1.0) and `cm`."
|
|
)
|
|
|
|
|
|
def scalings_for_boundary_conditions(timestep, sigma_data=0.5, timestep_scaling=1.0):
|
|
scaled_timestep = timestep_scaling * timestep
|
|
c_skip = sigma_data**2 / (scaled_timestep**2 + sigma_data**2)
|
|
c_out = scaled_timestep / (scaled_timestep**2 + sigma_data**2) ** 0.5
|
|
return c_skip, c_out
|
|
|
|
|
|
def log_validation(unet, scheduler, args, accelerator, weight_dtype, step, name="teacher"):
|
|
logger.info("Running validation... ")
|
|
|
|
unet = accelerator.unwrap_model(unet)
|
|
pipeline = ConsistencyModelPipeline(
|
|
unet=unet,
|
|
scheduler=scheduler,
|
|
)
|
|
pipeline = pipeline.to(device=accelerator.device)
|
|
pipeline.set_progress_bar_config(disable=True)
|
|
|
|
if args.enable_xformers_memory_efficient_attention:
|
|
pipeline.enable_xformers_memory_efficient_attention()
|
|
|
|
if args.seed is None:
|
|
generator = None
|
|
else:
|
|
generator = torch.Generator(device=accelerator.device).manual_seed(args.seed)
|
|
|
|
class_labels = [None]
|
|
if args.class_conditional:
|
|
if args.num_classes is not None:
|
|
class_labels = list(range(args.num_classes))
|
|
else:
|
|
logger.warning(
|
|
"The model is class-conditional but the number of classes is not set. The generated images will be"
|
|
" unconditional rather than class-conditional."
|
|
)
|
|
|
|
image_logs = []
|
|
|
|
for class_label in class_labels:
|
|
images = []
|
|
with torch.autocast("cuda"):
|
|
images = pipeline(
|
|
num_inference_steps=1,
|
|
batch_size=args.eval_batch_size,
|
|
class_labels=[class_label] * args.eval_batch_size,
|
|
generator=generator,
|
|
).images
|
|
log = {"images": images}
|
|
if args.class_conditional and class_label is not None:
|
|
log["class_label"] = str(class_label)
|
|
else:
|
|
log["class_label"] = "images"
|
|
image_logs.append(log)
|
|
|
|
for tracker in accelerator.trackers:
|
|
if tracker.name == "tensorboard":
|
|
for log in image_logs:
|
|
images = log["images"]
|
|
class_label = log["class_label"]
|
|
formatted_images = []
|
|
for image in images:
|
|
formatted_images.append(np.asarray(image))
|
|
|
|
formatted_images = np.stack(formatted_images)
|
|
|
|
tracker.writer.add_images(class_label, formatted_images, step, dataformats="NHWC")
|
|
elif tracker.name == "wandb":
|
|
formatted_images = []
|
|
|
|
for log in image_logs:
|
|
images = log["images"]
|
|
class_label = log["class_label"]
|
|
for image in images:
|
|
image = wandb.Image(image, caption=class_label)
|
|
formatted_images.append(image)
|
|
|
|
tracker.log({f"validation/{name}": formatted_images})
|
|
else:
|
|
logger.warning(f"image logging not implemented for {tracker.name}")
|
|
|
|
del pipeline
|
|
gc.collect()
|
|
torch.cuda.empty_cache()
|
|
|
|
return image_logs
|
|
|
|
|
|
def parse_args():
|
|
parser = argparse.ArgumentParser(description="Simple example of a training script.")
|
|
# ------------Model Arguments-----------
|
|
parser.add_argument(
|
|
"--model_config_name_or_path",
|
|
type=str,
|
|
default=None,
|
|
help="The config of the UNet model to train, leave as None to use standard DDPM configuration.",
|
|
)
|
|
parser.add_argument(
|
|
"--pretrained_model_name_or_path",
|
|
type=str,
|
|
default=None,
|
|
help=(
|
|
"If initializing the weights from a pretrained model, the path to the pretrained model or model identifier"
|
|
" from huggingface.co/models."
|
|
),
|
|
)
|
|
parser.add_argument(
|
|
"--revision",
|
|
type=str,
|
|
default=None,
|
|
required=False,
|
|
help="Revision of pretrained model identifier from huggingface.co/models.",
|
|
)
|
|
parser.add_argument(
|
|
"--variant",
|
|
type=str,
|
|
default=None,
|
|
help=(
|
|
"Variant of the model files of the pretrained model identifier from huggingface.co/models, e.g. `fp16`,"
|
|
" `non_ema`, etc.",
|
|
),
|
|
)
|
|
# ------------Dataset Arguments-----------
|
|
parser.add_argument(
|
|
"--train_data_dir",
|
|
type=str,
|
|
default=None,
|
|
help=(
|
|
"A folder containing the training data. Folder contents must follow the structure described in"
|
|
" https://huggingface.co/docs/datasets/image_dataset#imagefolder. In particular, a `metadata.jsonl` file"
|
|
" must exist to provide the captions for the images. Ignored if `dataset_name` is specified."
|
|
),
|
|
)
|
|
parser.add_argument(
|
|
"--dataset_name",
|
|
type=str,
|
|
default=None,
|
|
help=(
|
|
"The name of the Dataset (from the HuggingFace hub) to train on (could be your own, possibly private,"
|
|
" dataset). It can also be a path pointing to a local copy of a dataset in your filesystem,"
|
|
" or to a folder containing files that HF Datasets can understand."
|
|
),
|
|
)
|
|
parser.add_argument(
|
|
"--dataset_config_name",
|
|
type=str,
|
|
default=None,
|
|
help="The config of the Dataset, leave as None if there's only one config.",
|
|
)
|
|
parser.add_argument(
|
|
"--dataset_image_column_name",
|
|
type=str,
|
|
default="image",
|
|
help="The name of the image column in the dataset to use for training.",
|
|
)
|
|
parser.add_argument(
|
|
"--dataset_class_label_column_name",
|
|
type=str,
|
|
default="label",
|
|
help="If doing class-conditional training, the name of the class label column in the dataset to use.",
|
|
)
|
|
# ------------Image Processing Arguments-----------
|
|
parser.add_argument(
|
|
"--resolution",
|
|
type=int,
|
|
default=64,
|
|
help=(
|
|
"The resolution for input images, all the images in the train/validation dataset will be resized to this"
|
|
" resolution"
|
|
),
|
|
)
|
|
parser.add_argument(
|
|
"--interpolation_type",
|
|
type=str,
|
|
default="bilinear",
|
|
help=(
|
|
"The interpolation function used when resizing images to the desired resolution. Choose between `bilinear`,"
|
|
" `bicubic`, `box`, `nearest`, `nearest_exact`, `hamming`, and `lanczos`."
|
|
),
|
|
)
|
|
parser.add_argument(
|
|
"--center_crop",
|
|
default=False,
|
|
action="store_true",
|
|
help=(
|
|
"Whether to center crop the input images to the resolution. If not set, the images will be randomly"
|
|
" cropped. The images will be resized to the resolution first before cropping."
|
|
),
|
|
)
|
|
parser.add_argument(
|
|
"--random_flip",
|
|
default=False,
|
|
action="store_true",
|
|
help="whether to randomly flip images horizontally",
|
|
)
|
|
parser.add_argument(
|
|
"--class_conditional",
|
|
action="store_true",
|
|
help=(
|
|
"Whether to train a class-conditional model. If set, the class labels will be taken from the `label`"
|
|
" column of the provided dataset."
|
|
),
|
|
)
|
|
parser.add_argument(
|
|
"--num_classes",
|
|
type=int,
|
|
default=None,
|
|
help="The number of classes in the training data, if training a class-conditional model.",
|
|
)
|
|
parser.add_argument(
|
|
"--class_embed_type",
|
|
type=str,
|
|
default=None,
|
|
help=(
|
|
"The class embedding type to use. Choose from `None`, `identity`, and `timestep`. If `class_conditional`"
|
|
" and `num_classes` and set, but `class_embed_type` is `None`, a embedding matrix will be used."
|
|
),
|
|
)
|
|
# ------------Dataloader Arguments-----------
|
|
parser.add_argument(
|
|
"--dataloader_num_workers",
|
|
type=int,
|
|
default=0,
|
|
help=(
|
|
"The number of subprocesses to use for data loading. 0 means that the data will be loaded in the main"
|
|
" process."
|
|
),
|
|
)
|
|
# ------------Training Arguments-----------
|
|
# ----General Training Arguments----
|
|
parser.add_argument(
|
|
"--output_dir",
|
|
type=str,
|
|
default="ddpm-model-64",
|
|
help="The output directory where the model predictions and checkpoints will be written.",
|
|
)
|
|
parser.add_argument("--overwrite_output_dir", action="store_true")
|
|
parser.add_argument(
|
|
"--cache_dir",
|
|
type=str,
|
|
default=None,
|
|
help="The directory where the downloaded models and datasets will be stored.",
|
|
)
|
|
parser.add_argument("--seed", type=int, default=None, help="A seed for reproducible training.")
|
|
# ----Batch Size and Training Length----
|
|
parser.add_argument(
|
|
"--train_batch_size", type=int, default=16, help="Batch size (per device) for the training dataloader."
|
|
)
|
|
parser.add_argument("--num_train_epochs", type=int, default=100)
|
|
parser.add_argument(
|
|
"--max_train_steps",
|
|
type=int,
|
|
default=None,
|
|
help="Total number of training steps to perform. If provided, overrides num_train_epochs.",
|
|
)
|
|
parser.add_argument(
|
|
"--max_train_samples",
|
|
type=int,
|
|
default=None,
|
|
help=(
|
|
"For debugging purposes or quicker training, truncate the number of training examples to this "
|
|
"value if set."
|
|
),
|
|
)
|
|
# ----Learning Rate----
|
|
parser.add_argument(
|
|
"--learning_rate",
|
|
type=float,
|
|
default=1e-4,
|
|
help="Initial learning rate (after the potential warmup period) to use.",
|
|
)
|
|
parser.add_argument(
|
|
"--scale_lr",
|
|
action="store_true",
|
|
default=False,
|
|
help="Scale the learning rate by the number of GPUs, gradient accumulation steps, and batch size.",
|
|
)
|
|
parser.add_argument(
|
|
"--lr_scheduler",
|
|
type=str,
|
|
default="cosine",
|
|
help=(
|
|
'The scheduler type to use. Choose between ["linear", "cosine", "cosine_with_restarts", "polynomial",'
|
|
' "constant", "constant_with_warmup"]'
|
|
),
|
|
)
|
|
parser.add_argument(
|
|
"--lr_warmup_steps", type=int, default=500, help="Number of steps for the warmup in the lr scheduler."
|
|
)
|
|
# ----Optimizer (Adam) Arguments----
|
|
parser.add_argument(
|
|
"--optimizer_type",
|
|
type=str,
|
|
default="adamw",
|
|
help=(
|
|
"The optimizer algorithm to use for training. Choose between `radam` and `adamw`. The iCT paper uses"
|
|
" RAdam."
|
|
),
|
|
)
|
|
parser.add_argument(
|
|
"--use_8bit_adam", action="store_true", help="Whether or not to use 8-bit Adam from bitsandbytes."
|
|
)
|
|
parser.add_argument("--adam_beta1", type=float, default=0.95, help="The beta1 parameter for the Adam optimizer.")
|
|
parser.add_argument("--adam_beta2", type=float, default=0.999, help="The beta2 parameter for the Adam optimizer.")
|
|
parser.add_argument(
|
|
"--adam_weight_decay", type=float, default=1e-6, help="Weight decay magnitude for the Adam optimizer."
|
|
)
|
|
parser.add_argument("--adam_epsilon", type=float, default=1e-08, help="Epsilon value for the Adam optimizer.")
|
|
parser.add_argument("--max_grad_norm", default=1.0, type=float, help="Max gradient norm.")
|
|
# ----Consistency Training (CT) Specific Arguments----
|
|
parser.add_argument(
|
|
"--prediction_type",
|
|
type=str,
|
|
default="sample",
|
|
choices=["sample"],
|
|
help="Whether the model should predict the 'epsilon'/noise error or directly the reconstructed image 'x0'.",
|
|
)
|
|
parser.add_argument("--ddpm_num_steps", type=int, default=1000)
|
|
parser.add_argument("--ddpm_num_inference_steps", type=int, default=1000)
|
|
parser.add_argument("--ddpm_beta_schedule", type=str, default="linear")
|
|
parser.add_argument(
|
|
"--sigma_min",
|
|
type=float,
|
|
default=0.002,
|
|
help=(
|
|
"The lower boundary for the timestep discretization, which should be set to a small positive value close"
|
|
" to zero to avoid numerical issues when solving the PF-ODE backwards in time."
|
|
),
|
|
)
|
|
parser.add_argument(
|
|
"--sigma_max",
|
|
type=float,
|
|
default=80.0,
|
|
help=(
|
|
"The upper boundary for the timestep discretization, which also determines the variance of the Gaussian"
|
|
" prior."
|
|
),
|
|
)
|
|
parser.add_argument(
|
|
"--rho",
|
|
type=float,
|
|
default=7.0,
|
|
help="The rho parameter for the Karras sigmas timestep dicretization.",
|
|
)
|
|
parser.add_argument(
|
|
"--huber_c",
|
|
type=float,
|
|
default=None,
|
|
help=(
|
|
"The Pseudo-Huber loss parameter c. If not set, this will default to the value recommended in the Improved"
|
|
" Consistency Training (iCT) paper of 0.00054 * sqrt(d), where d is the data dimensionality."
|
|
),
|
|
)
|
|
parser.add_argument(
|
|
"--discretization_s_0",
|
|
type=int,
|
|
default=10,
|
|
help=(
|
|
"The s_0 parameter in the discretization curriculum N(k). This controls the number of training steps after"
|
|
" which the number of discretization steps N will be doubled."
|
|
),
|
|
)
|
|
parser.add_argument(
|
|
"--discretization_s_1",
|
|
type=int,
|
|
default=1280,
|
|
help=(
|
|
"The s_1 parameter in the discretization curriculum N(k). This controls the upper limit to the number of"
|
|
" discretization steps used. Increasing this value will reduce the bias at the cost of higher variance."
|
|
),
|
|
)
|
|
parser.add_argument(
|
|
"--constant_discretization_steps",
|
|
action="store_true",
|
|
help=(
|
|
"Whether to set the discretization curriculum N(k) to be the constant value `discretization_s_0 + 1`. This"
|
|
" is useful for testing when `max_number_steps` is small, when `k_prime` would otherwise be 0, causing"
|
|
" a divide-by-zero error."
|
|
),
|
|
)
|
|
parser.add_argument(
|
|
"--p_mean",
|
|
type=float,
|
|
default=-1.1,
|
|
help=(
|
|
"The mean parameter P_mean for the (discretized) lognormal noise schedule, which controls the probability"
|
|
" of sampling a (discrete) noise level sigma_i."
|
|
),
|
|
)
|
|
parser.add_argument(
|
|
"--p_std",
|
|
type=float,
|
|
default=2.0,
|
|
help=(
|
|
"The standard deviation parameter P_std for the (discretized) noise schedule, which controls the"
|
|
" probability of sampling a (discrete) noise level sigma_i."
|
|
),
|
|
)
|
|
parser.add_argument(
|
|
"--noise_precond_type",
|
|
type=str,
|
|
default="cm",
|
|
help=(
|
|
"The noise preconditioning function to use for transforming the raw Karras sigmas into the timestep"
|
|
" argument of the U-Net. Choose between `none` (the identity function), `edm`, and `cm`."
|
|
),
|
|
)
|
|
parser.add_argument(
|
|
"--input_precond_type",
|
|
type=str,
|
|
default="cm",
|
|
help=(
|
|
"The input preconditioning function to use for scaling the image input of the U-Net. Choose between `none`"
|
|
" (a scaling factor of 1) and `cm`."
|
|
),
|
|
)
|
|
parser.add_argument(
|
|
"--skip_steps",
|
|
type=int,
|
|
default=1,
|
|
help=(
|
|
"The gap in indices between the student and teacher noise levels. In the iCT paper this is always set to"
|
|
" 1, but theoretically this could be greater than 1 and/or altered according to a curriculum throughout"
|
|
" training, much like the number of discretization steps is."
|
|
),
|
|
)
|
|
parser.add_argument(
|
|
"--cast_teacher",
|
|
action="store_true",
|
|
help="Whether to cast the teacher U-Net model to `weight_dtype` or leave it in full precision.",
|
|
)
|
|
# ----Exponential Moving Average (EMA) Arguments----
|
|
parser.add_argument(
|
|
"--use_ema",
|
|
action="store_true",
|
|
help="Whether to use Exponential Moving Average for the final model weights.",
|
|
)
|
|
parser.add_argument(
|
|
"--ema_min_decay",
|
|
type=float,
|
|
default=None,
|
|
help=(
|
|
"The minimum decay magnitude for EMA. If not set, this will default to the value of `ema_max_decay`,"
|
|
" resulting in a constant EMA decay rate."
|
|
),
|
|
)
|
|
parser.add_argument(
|
|
"--ema_max_decay",
|
|
type=float,
|
|
default=0.99993,
|
|
help=(
|
|
"The maximum decay magnitude for EMA. Setting `ema_min_decay` equal to this value will result in a"
|
|
" constant decay rate."
|
|
),
|
|
)
|
|
parser.add_argument(
|
|
"--use_ema_warmup",
|
|
action="store_true",
|
|
help="Whether to use EMA warmup.",
|
|
)
|
|
parser.add_argument("--ema_inv_gamma", type=float, default=1.0, help="The inverse gamma value for the EMA decay.")
|
|
parser.add_argument("--ema_power", type=float, default=3 / 4, help="The power value for the EMA decay.")
|
|
# ----Training Optimization Arguments----
|
|
parser.add_argument(
|
|
"--mixed_precision",
|
|
type=str,
|
|
default="no",
|
|
choices=["no", "fp16", "bf16"],
|
|
help=(
|
|
"Whether to use mixed precision. Choose"
|
|
"between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10."
|
|
"and an Nvidia Ampere GPU."
|
|
),
|
|
)
|
|
parser.add_argument(
|
|
"--allow_tf32",
|
|
action="store_true",
|
|
help=(
|
|
"Whether or not to allow TF32 on Ampere GPUs. Can be used to speed up training. For more information, see"
|
|
" https://pytorch.org/docs/stable/notes/cuda.html#tensorfloat-32-tf32-on-ampere-devices"
|
|
),
|
|
)
|
|
parser.add_argument(
|
|
"--gradient_checkpointing",
|
|
action="store_true",
|
|
help="Whether or not to use gradient checkpointing to save memory at the expense of slower backward pass.",
|
|
)
|
|
parser.add_argument(
|
|
"--gradient_accumulation_steps",
|
|
type=int,
|
|
default=1,
|
|
help="Number of updates steps to accumulate before performing a backward/update pass.",
|
|
)
|
|
parser.add_argument(
|
|
"--enable_xformers_memory_efficient_attention", action="store_true", help="Whether or not to use xformers."
|
|
)
|
|
# ----Distributed Training Arguments----
|
|
parser.add_argument("--local_rank", type=int, default=-1, help="For distributed training: local_rank")
|
|
# ------------Validation Arguments-----------
|
|
parser.add_argument(
|
|
"--validation_steps",
|
|
type=int,
|
|
default=200,
|
|
help="Run validation every X steps.",
|
|
)
|
|
parser.add_argument(
|
|
"--eval_batch_size",
|
|
type=int,
|
|
default=16,
|
|
help=(
|
|
"The number of images to generate for evaluation. Note that if `class_conditional` and `num_classes` is"
|
|
" set the effective number of images generated per evaluation step is `eval_batch_size * num_classes`."
|
|
),
|
|
)
|
|
parser.add_argument("--save_images_epochs", type=int, default=10, help="How often to save images during training.")
|
|
# ------------Validation Arguments-----------
|
|
parser.add_argument(
|
|
"--checkpointing_steps",
|
|
type=int,
|
|
default=500,
|
|
help=(
|
|
"Save a checkpoint of the training state every X updates. These checkpoints are only suitable for resuming"
|
|
" training using `--resume_from_checkpoint`."
|
|
),
|
|
)
|
|
parser.add_argument(
|
|
"--checkpoints_total_limit",
|
|
type=int,
|
|
default=None,
|
|
help=("Max number of checkpoints to store."),
|
|
)
|
|
parser.add_argument(
|
|
"--resume_from_checkpoint",
|
|
type=str,
|
|
default=None,
|
|
help=(
|
|
"Whether training should be resumed from a previous checkpoint. Use a path saved by"
|
|
' `--checkpointing_steps`, or `"latest"` to automatically select the last available checkpoint.'
|
|
),
|
|
)
|
|
parser.add_argument(
|
|
"--save_model_epochs", type=int, default=10, help="How often to save the model during training."
|
|
)
|
|
# ------------Logging Arguments-----------
|
|
parser.add_argument(
|
|
"--report_to",
|
|
type=str,
|
|
default="tensorboard",
|
|
help=(
|
|
'The integration to report the results and logs to. Supported platforms are `"tensorboard"`'
|
|
' (default), `"wandb"` and `"comet_ml"`. Use `"all"` to report to all integrations.'
|
|
),
|
|
)
|
|
parser.add_argument(
|
|
"--logging_dir",
|
|
type=str,
|
|
default="logs",
|
|
help=(
|
|
"[TensorBoard](https://www.tensorflow.org/tensorboard) log directory. Will default to"
|
|
" *output_dir/runs/**CURRENT_DATETIME_HOSTNAME***."
|
|
),
|
|
)
|
|
# ------------HuggingFace Hub Arguments-----------
|
|
parser.add_argument("--push_to_hub", action="store_true", help="Whether or not to push the model to the Hub.")
|
|
parser.add_argument("--hub_token", type=str, default=None, help="The token to use to push to the Model Hub.")
|
|
parser.add_argument(
|
|
"--hub_model_id",
|
|
type=str,
|
|
default=None,
|
|
help="The name of the repository to keep in sync with the local `output_dir`.",
|
|
)
|
|
parser.add_argument(
|
|
"--hub_private_repo", action="store_true", help="Whether or not to create a private repository."
|
|
)
|
|
# ------------Accelerate Arguments-----------
|
|
parser.add_argument(
|
|
"--tracker_project_name",
|
|
type=str,
|
|
default="consistency-training",
|
|
help=(
|
|
"The `project_name` argument passed to Accelerator.init_trackers for"
|
|
" more information see https://huggingface.co/docs/accelerate/v0.17.0/en/package_reference/accelerator#accelerate.Accelerator"
|
|
),
|
|
)
|
|
|
|
args = parser.parse_args()
|
|
env_local_rank = int(os.environ.get("LOCAL_RANK", -1))
|
|
if env_local_rank != -1 and env_local_rank != args.local_rank:
|
|
args.local_rank = env_local_rank
|
|
|
|
if args.dataset_name is None and args.train_data_dir is None:
|
|
raise ValueError("You must specify either a dataset name from the hub or a train data directory.")
|
|
|
|
return args
|
|
|
|
|
|
def main(args):
|
|
logging_dir = os.path.join(args.output_dir, args.logging_dir)
|
|
|
|
if args.report_to == "wandb" and args.hub_token is not None:
|
|
raise ValueError(
|
|
"You cannot use both --report_to=wandb and --hub_token due to a security risk of exposing your token."
|
|
" Please use `hf auth login` to authenticate with the Hub."
|
|
)
|
|
|
|
accelerator_project_config = ProjectConfiguration(project_dir=args.output_dir, logging_dir=logging_dir)
|
|
|
|
kwargs = InitProcessGroupKwargs(timeout=timedelta(seconds=7200)) # a big number for high resolution or big dataset
|
|
accelerator = Accelerator(
|
|
gradient_accumulation_steps=args.gradient_accumulation_steps,
|
|
mixed_precision=args.mixed_precision,
|
|
log_with=args.report_to,
|
|
project_config=accelerator_project_config,
|
|
kwargs_handlers=[kwargs],
|
|
)
|
|
|
|
if args.report_to == "tensorboard":
|
|
if not is_tensorboard_available():
|
|
raise ImportError("Make sure to install tensorboard if you want to use it for logging during training.")
|
|
|
|
elif args.report_to == "wandb":
|
|
if not is_wandb_available():
|
|
raise ImportError("Make sure to install wandb if you want to use it for logging during training.")
|
|
|
|
# Make one log on every process with the configuration for debugging.
|
|
logging.basicConfig(
|
|
format="%(asctime)s - %(levelname)s - %(name)s - %(message)s",
|
|
datefmt="%m/%d/%Y %H:%M:%S",
|
|
level=logging.INFO,
|
|
)
|
|
logger.info(accelerator.state, main_process_only=False)
|
|
if accelerator.is_local_main_process:
|
|
datasets.utils.logging.set_verbosity_warning()
|
|
diffusers.utils.logging.set_verbosity_info()
|
|
else:
|
|
datasets.utils.logging.set_verbosity_error()
|
|
diffusers.utils.logging.set_verbosity_error()
|
|
|
|
# If passed along, set the training seed now.
|
|
if args.seed is not None:
|
|
set_seed(args.seed)
|
|
|
|
# Handle the repository creation
|
|
if accelerator.is_main_process:
|
|
if args.output_dir is not None:
|
|
os.makedirs(args.output_dir, exist_ok=True)
|
|
|
|
if args.push_to_hub:
|
|
repo_id = create_repo(
|
|
repo_id=args.hub_model_id or Path(args.output_dir).name, exist_ok=True, token=args.hub_token
|
|
).repo_id
|
|
|
|
# 1. Initialize the noise scheduler.
|
|
initial_discretization_steps = get_discretization_steps(
|
|
0,
|
|
args.max_train_steps,
|
|
s_0=args.discretization_s_0,
|
|
s_1=args.discretization_s_1,
|
|
constant=args.constant_discretization_steps,
|
|
)
|
|
noise_scheduler = CMStochasticIterativeScheduler(
|
|
num_train_timesteps=initial_discretization_steps,
|
|
sigma_min=args.sigma_min,
|
|
sigma_max=args.sigma_max,
|
|
rho=args.rho,
|
|
)
|
|
|
|
# 2. Initialize the student U-Net model.
|
|
if args.pretrained_model_name_or_path is not None:
|
|
logger.info(f"Loading pretrained U-Net weights from {args.pretrained_model_name_or_path}... ")
|
|
unet = UNet2DModel.from_pretrained(
|
|
args.pretrained_model_name_or_path, subfolder="unet", revision=args.revision, variant=args.variant
|
|
)
|
|
elif args.model_config_name_or_path is None:
|
|
# TODO: use default architectures from iCT paper
|
|
if not args.class_conditional and (args.num_classes is not None or args.class_embed_type is not None):
|
|
logger.warning(
|
|
f"`--class_conditional` is set to `False` but `--num_classes` is set to {args.num_classes} and"
|
|
f" `--class_embed_type` is set to {args.class_embed_type}. These values will be overridden to `None`."
|
|
)
|
|
args.num_classes = None
|
|
args.class_embed_type = None
|
|
elif args.class_conditional and args.num_classes is None and args.class_embed_type is None:
|
|
logger.warning(
|
|
"`--class_conditional` is set to `True` but neither `--num_classes` nor `--class_embed_type` is set."
|
|
"`class_conditional` will be overridden to `False`."
|
|
)
|
|
args.class_conditional = False
|
|
unet = UNet2DModel(
|
|
sample_size=args.resolution,
|
|
in_channels=3,
|
|
out_channels=3,
|
|
layers_per_block=2,
|
|
block_out_channels=(128, 128, 256, 256, 512, 512),
|
|
down_block_types=(
|
|
"DownBlock2D",
|
|
"DownBlock2D",
|
|
"DownBlock2D",
|
|
"DownBlock2D",
|
|
"AttnDownBlock2D",
|
|
"DownBlock2D",
|
|
),
|
|
up_block_types=(
|
|
"UpBlock2D",
|
|
"AttnUpBlock2D",
|
|
"UpBlock2D",
|
|
"UpBlock2D",
|
|
"UpBlock2D",
|
|
"UpBlock2D",
|
|
),
|
|
class_embed_type=args.class_embed_type,
|
|
num_class_embeds=args.num_classes,
|
|
)
|
|
else:
|
|
config = UNet2DModel.load_config(args.model_config_name_or_path)
|
|
unet = UNet2DModel.from_config(config)
|
|
unet.train()
|
|
|
|
# Create EMA for the student U-Net model.
|
|
if args.use_ema:
|
|
if args.ema_min_decay is None:
|
|
args.ema_min_decay = args.ema_max_decay
|
|
ema_unet = EMAModel(
|
|
unet.parameters(),
|
|
decay=args.ema_max_decay,
|
|
min_decay=args.ema_min_decay,
|
|
use_ema_warmup=args.use_ema_warmup,
|
|
inv_gamma=args.ema_inv_gamma,
|
|
power=args.ema_power,
|
|
model_cls=UNet2DModel,
|
|
model_config=unet.config,
|
|
)
|
|
|
|
# 3. Initialize the teacher U-Net model from the student U-Net model.
|
|
# Note that following the improved Consistency Training paper, the teacher U-Net is not updated via EMA (e.g. the
|
|
# EMA decay rate is 0.)
|
|
teacher_unet = UNet2DModel.from_config(unet.config)
|
|
teacher_unet.load_state_dict(unet.state_dict())
|
|
teacher_unet.train()
|
|
teacher_unet.requires_grad_(False)
|
|
|
|
# 4. Handle mixed precision and device placement
|
|
weight_dtype = torch.float32
|
|
if accelerator.mixed_precision == "fp16":
|
|
weight_dtype = torch.float16
|
|
args.mixed_precision = accelerator.mixed_precision
|
|
elif accelerator.mixed_precision == "bf16":
|
|
weight_dtype = torch.bfloat16
|
|
args.mixed_precision = accelerator.mixed_precision
|
|
|
|
# Cast teacher_unet to weight_dtype if cast_teacher is set.
|
|
if args.cast_teacher:
|
|
teacher_dtype = weight_dtype
|
|
else:
|
|
teacher_dtype = torch.float32
|
|
|
|
teacher_unet.to(accelerator.device)
|
|
if args.use_ema:
|
|
ema_unet.to(accelerator.device)
|
|
|
|
# 5. Handle saving and loading of checkpoints.
|
|
# `accelerate` 0.16.0 will have better support for customized saving
|
|
if version.parse(accelerate.__version__) >= version.parse("0.16.0"):
|
|
# create custom saving & loading hooks so that `accelerator.save_state(...)` serializes in a nice format
|
|
def save_model_hook(models, weights, output_dir):
|
|
if accelerator.is_main_process:
|
|
teacher_unet.save_pretrained(os.path.join(output_dir, "unet_teacher"))
|
|
if args.use_ema:
|
|
ema_unet.save_pretrained(os.path.join(output_dir, "unet_ema"))
|
|
|
|
for i, model in enumerate(models):
|
|
model.save_pretrained(os.path.join(output_dir, "unet"))
|
|
|
|
# make sure to pop weight so that corresponding model is not saved again
|
|
weights.pop()
|
|
|
|
def load_model_hook(models, input_dir):
|
|
load_model = UNet2DModel.from_pretrained(os.path.join(input_dir, "unet_teacher"))
|
|
teacher_unet.load_state_dict(load_model.state_dict())
|
|
teacher_unet.to(accelerator.device)
|
|
del load_model
|
|
|
|
if args.use_ema:
|
|
load_model = EMAModel.from_pretrained(os.path.join(input_dir, "unet_ema"), UNet2DModel)
|
|
ema_unet.load_state_dict(load_model.state_dict())
|
|
ema_unet.to(accelerator.device)
|
|
del load_model
|
|
|
|
for i in range(len(models)):
|
|
# pop models so that they are not loaded again
|
|
model = models.pop()
|
|
|
|
# load diffusers style into model
|
|
load_model = UNet2DModel.from_pretrained(input_dir, subfolder="unet")
|
|
model.register_to_config(**load_model.config)
|
|
|
|
model.load_state_dict(load_model.state_dict())
|
|
del load_model
|
|
|
|
accelerator.register_save_state_pre_hook(save_model_hook)
|
|
accelerator.register_load_state_pre_hook(load_model_hook)
|
|
|
|
# 6. Enable optimizations
|
|
if args.enable_xformers_memory_efficient_attention:
|
|
if is_xformers_available():
|
|
import xformers
|
|
|
|
xformers_version = version.parse(xformers.__version__)
|
|
if xformers_version == version.parse("0.0.16"):
|
|
logger.warning(
|
|
"xFormers 0.0.16 cannot be used for training in some GPUs. If you observe problems during training, please update xFormers to at least 0.0.17. See https://huggingface.co/docs/diffusers/main/en/optimization/xformers for more details."
|
|
)
|
|
unet.enable_xformers_memory_efficient_attention()
|
|
teacher_unet.enable_xformers_memory_efficient_attention()
|
|
if args.use_ema:
|
|
ema_unet.enable_xformers_memory_efficient_attention()
|
|
else:
|
|
raise ValueError("xformers is not available. Make sure it is installed correctly")
|
|
|
|
# Enable TF32 for faster training on Ampere GPUs,
|
|
# cf https://pytorch.org/docs/stable/notes/cuda.html#tensorfloat-32-tf32-on-ampere-devices
|
|
if args.allow_tf32:
|
|
torch.backends.cuda.matmul.allow_tf32 = True
|
|
|
|
if args.gradient_checkpointing:
|
|
unet.enable_gradient_checkpointing()
|
|
|
|
if args.optimizer_type == "radam":
|
|
optimizer_class = torch.optim.RAdam
|
|
elif args.optimizer_type == "adamw":
|
|
# Use 8-bit Adam for lower memory usage or to fine-tune the model for 16GB GPUs
|
|
if args.use_8bit_adam:
|
|
try:
|
|
import bitsandbytes as bnb
|
|
except ImportError:
|
|
raise ImportError(
|
|
"To use 8-bit Adam, please install the bitsandbytes library: `pip install bitsandbytes`."
|
|
)
|
|
|
|
optimizer_class = bnb.optim.AdamW8bit
|
|
else:
|
|
optimizer_class = torch.optim.AdamW
|
|
else:
|
|
raise ValueError(
|
|
f"Optimizer type {args.optimizer_type} is not supported. Currently supported optimizer types are `radam`"
|
|
f" and `adamw`."
|
|
)
|
|
|
|
# 7. Initialize the optimizer
|
|
optimizer = optimizer_class(
|
|
unet.parameters(),
|
|
lr=args.learning_rate,
|
|
betas=(args.adam_beta1, args.adam_beta2),
|
|
weight_decay=args.adam_weight_decay,
|
|
eps=args.adam_epsilon,
|
|
)
|
|
|
|
# 8. Dataset creation and data preprocessing
|
|
# Get the datasets: you can either provide your own training and evaluation files (see below)
|
|
# or specify a Dataset from the hub (the dataset will be downloaded automatically from the datasets Hub).
|
|
|
|
# In distributed training, the load_dataset function guarantees that only one local process can concurrently
|
|
# download the dataset.
|
|
if args.dataset_name is not None:
|
|
dataset = load_dataset(
|
|
args.dataset_name,
|
|
args.dataset_config_name,
|
|
cache_dir=args.cache_dir,
|
|
split="train",
|
|
)
|
|
else:
|
|
dataset = load_dataset("imagefolder", data_dir=args.train_data_dir, cache_dir=args.cache_dir, split="train")
|
|
# See more about loading custom images at
|
|
# https://huggingface.co/docs/datasets/v2.4.0/en/image_load#imagefolder
|
|
|
|
# Preprocessing the datasets and DataLoaders creation.
|
|
interpolation_mode = resolve_interpolation_mode(args.interpolation_type)
|
|
augmentations = transforms.Compose(
|
|
[
|
|
transforms.Resize(args.resolution, interpolation=interpolation_mode),
|
|
transforms.CenterCrop(args.resolution) if args.center_crop else transforms.RandomCrop(args.resolution),
|
|
transforms.RandomHorizontalFlip() if args.random_flip else transforms.Lambda(lambda x: x),
|
|
transforms.ToTensor(),
|
|
transforms.Normalize([0.5], [0.5]),
|
|
]
|
|
)
|
|
|
|
def transform_images(examples):
|
|
images = [augmentations(image.convert("RGB")) for image in examples[args.dataset_image_column_name]]
|
|
batch_dict = {"images": images}
|
|
if args.class_conditional:
|
|
batch_dict["class_labels"] = examples[args.dataset_class_label_column_name]
|
|
return batch_dict
|
|
|
|
logger.info(f"Dataset size: {len(dataset)}")
|
|
|
|
dataset.set_transform(transform_images)
|
|
train_dataloader = torch.utils.data.DataLoader(
|
|
dataset, batch_size=args.train_batch_size, shuffle=True, num_workers=args.dataloader_num_workers
|
|
)
|
|
|
|
# 9. Initialize the learning rate scheduler
|
|
# Scheduler and math around the number of training steps.
|
|
overrode_max_train_steps = False
|
|
num_update_steps_per_epoch = math.ceil(len(train_dataloader) / args.gradient_accumulation_steps)
|
|
if args.max_train_steps is None:
|
|
args.max_train_steps = args.num_train_epochs * num_update_steps_per_epoch
|
|
overrode_max_train_steps = True
|
|
|
|
lr_scheduler = get_scheduler(
|
|
args.lr_scheduler,
|
|
optimizer=optimizer,
|
|
num_warmup_steps=args.lr_warmup_steps,
|
|
num_training_steps=args.max_train_steps,
|
|
)
|
|
|
|
# 10. Prepare for training
|
|
# Prepare everything with our `accelerator`.
|
|
unet, optimizer, train_dataloader, lr_scheduler = accelerator.prepare(
|
|
unet, optimizer, train_dataloader, lr_scheduler
|
|
)
|
|
|
|
def recalculate_num_discretization_step_values(discretization_steps, skip_steps):
|
|
"""
|
|
Recalculates all quantities depending on the number of discretization steps N.
|
|
"""
|
|
noise_scheduler = CMStochasticIterativeScheduler(
|
|
num_train_timesteps=discretization_steps,
|
|
sigma_min=args.sigma_min,
|
|
sigma_max=args.sigma_max,
|
|
rho=args.rho,
|
|
)
|
|
current_timesteps = get_karras_sigmas(discretization_steps, args.sigma_min, args.sigma_max, args.rho)
|
|
valid_teacher_timesteps_plus_one = current_timesteps[: len(current_timesteps) - skip_steps + 1]
|
|
# timestep_weights are the unnormalized probabilities of sampling the timestep/noise level at each index
|
|
timestep_weights = get_discretized_lognormal_weights(
|
|
valid_teacher_timesteps_plus_one, p_mean=args.p_mean, p_std=args.p_std
|
|
)
|
|
# timestep_loss_weights is the timestep-dependent loss weighting schedule lambda(sigma_i)
|
|
timestep_loss_weights = get_loss_weighting_schedule(valid_teacher_timesteps_plus_one)
|
|
|
|
current_timesteps = current_timesteps.to(accelerator.device)
|
|
timestep_weights = timestep_weights.to(accelerator.device)
|
|
timestep_loss_weights = timestep_loss_weights.to(accelerator.device)
|
|
|
|
return noise_scheduler, current_timesteps, timestep_weights, timestep_loss_weights
|
|
|
|
# We need to recalculate our total training steps as the size of the training dataloader may have changed.
|
|
num_update_steps_per_epoch = math.ceil(len(train_dataloader) / args.gradient_accumulation_steps)
|
|
if overrode_max_train_steps:
|
|
args.max_train_steps = args.num_train_epochs * num_update_steps_per_epoch
|
|
# Afterwards we recalculate our number of training epochs
|
|
args.num_train_epochs = math.ceil(args.max_train_steps / num_update_steps_per_epoch)
|
|
|
|
# We need to initialize the trackers we use, and also store our configuration.
|
|
# The trackers initializes automatically on the main process.
|
|
if accelerator.is_main_process:
|
|
tracker_config = dict(vars(args))
|
|
accelerator.init_trackers(args.tracker_project_name, config=tracker_config)
|
|
|
|
# Function for unwrapping if torch.compile() was used in accelerate.
|
|
def unwrap_model(model):
|
|
model = accelerator.unwrap_model(model)
|
|
model = model._orig_mod if is_compiled_module(model) else model
|
|
return model
|
|
|
|
total_batch_size = args.train_batch_size * accelerator.num_processes * args.gradient_accumulation_steps
|
|
|
|
logger.info("***** Running training *****")
|
|
logger.info(f" Num examples = {len(dataset)}")
|
|
logger.info(f" Num Epochs = {args.num_train_epochs}")
|
|
logger.info(f" Instantaneous batch size per device = {args.train_batch_size}")
|
|
logger.info(f" Total train batch size (w. parallel, distributed & accumulation) = {total_batch_size}")
|
|
logger.info(f" Gradient Accumulation steps = {args.gradient_accumulation_steps}")
|
|
logger.info(f" Total optimization steps = {args.max_train_steps}")
|
|
|
|
global_step = 0
|
|
first_epoch = 0
|
|
|
|
# Potentially load in the weights and states from a previous save
|
|
if args.resume_from_checkpoint:
|
|
if args.resume_from_checkpoint != "latest":
|
|
path = os.path.basename(args.resume_from_checkpoint)
|
|
else:
|
|
# Get the most recent checkpoint
|
|
dirs = os.listdir(args.output_dir)
|
|
dirs = [d for d in dirs if d.startswith("checkpoint")]
|
|
dirs = sorted(dirs, key=lambda x: int(x.split("-")[1]))
|
|
path = dirs[-1] if len(dirs) > 0 else None
|
|
|
|
if path is None:
|
|
accelerator.print(
|
|
f"Checkpoint '{args.resume_from_checkpoint}' does not exist. Starting a new training run."
|
|
)
|
|
args.resume_from_checkpoint = None
|
|
initial_global_step = 0
|
|
else:
|
|
accelerator.print(f"Resuming from checkpoint {path}")
|
|
accelerator.load_state(os.path.join(args.output_dir, path))
|
|
global_step = int(path.split("-")[1])
|
|
|
|
initial_global_step = global_step
|
|
first_epoch = global_step // num_update_steps_per_epoch
|
|
else:
|
|
initial_global_step = 0
|
|
|
|
# Resolve the c parameter for the Pseudo-Huber loss
|
|
if args.huber_c is None:
|
|
args.huber_c = 0.00054 * args.resolution * math.sqrt(unwrap_model(unet).config.in_channels)
|
|
|
|
# Get current number of discretization steps N according to our discretization curriculum
|
|
current_discretization_steps = get_discretization_steps(
|
|
initial_global_step,
|
|
args.max_train_steps,
|
|
s_0=args.discretization_s_0,
|
|
s_1=args.discretization_s_1,
|
|
constant=args.constant_discretization_steps,
|
|
)
|
|
current_skip_steps = get_skip_steps(initial_global_step, initial_skip=args.skip_steps)
|
|
if current_skip_steps >= current_discretization_steps:
|
|
raise ValueError(
|
|
f"The current skip steps is {current_skip_steps}, but should be smaller than the current number of"
|
|
f" discretization steps {current_discretization_steps}"
|
|
)
|
|
# Recalculate all quantities depending on the number of discretization steps N
|
|
(
|
|
noise_scheduler,
|
|
current_timesteps,
|
|
timestep_weights,
|
|
timestep_loss_weights,
|
|
) = recalculate_num_discretization_step_values(current_discretization_steps, current_skip_steps)
|
|
|
|
progress_bar = tqdm(
|
|
range(0, args.max_train_steps),
|
|
initial=initial_global_step,
|
|
desc="Steps",
|
|
# Only show the progress bar once on each machine.
|
|
disable=not accelerator.is_local_main_process,
|
|
)
|
|
|
|
# 11. Train!
|
|
for epoch in range(first_epoch, args.num_train_epochs):
|
|
unet.train()
|
|
for step, batch in enumerate(train_dataloader):
|
|
# 1. Get batch of images from dataloader (sample x ~ p_data(x))
|
|
clean_images = batch["images"].to(weight_dtype)
|
|
if args.class_conditional:
|
|
class_labels = batch["class_labels"]
|
|
else:
|
|
class_labels = None
|
|
bsz = clean_images.shape[0]
|
|
|
|
# 2. Sample a random timestep for each image according to the noise schedule.
|
|
# Sample random indices i ~ p(i), where p(i) is the dicretized lognormal distribution in the iCT paper
|
|
# NOTE: timestep_indices should be in the range [0, len(current_timesteps) - k - 1] inclusive
|
|
timestep_indices = torch.multinomial(timestep_weights, bsz, replacement=True).long()
|
|
teacher_timesteps = current_timesteps[timestep_indices]
|
|
student_timesteps = current_timesteps[timestep_indices + current_skip_steps]
|
|
|
|
# 3. Sample noise and add it to the clean images for both teacher and student unets
|
|
# Sample noise z ~ N(0, I) that we'll add to the images
|
|
noise = torch.randn(clean_images.shape, dtype=weight_dtype, device=clean_images.device)
|
|
# Add noise to the clean images according to the noise magnitude at each timestep
|
|
# (this is the forward diffusion process)
|
|
teacher_noisy_images = add_noise(clean_images, noise, teacher_timesteps)
|
|
student_noisy_images = add_noise(clean_images, noise, student_timesteps)
|
|
|
|
# 4. Calculate preconditioning and scalings for boundary conditions for the consistency model.
|
|
teacher_rescaled_timesteps = get_noise_preconditioning(teacher_timesteps, args.noise_precond_type)
|
|
student_rescaled_timesteps = get_noise_preconditioning(student_timesteps, args.noise_precond_type)
|
|
|
|
c_in_teacher = get_input_preconditioning(teacher_timesteps, input_precond_type=args.input_precond_type)
|
|
c_in_student = get_input_preconditioning(student_timesteps, input_precond_type=args.input_precond_type)
|
|
|
|
c_skip_teacher, c_out_teacher = scalings_for_boundary_conditions(teacher_timesteps)
|
|
c_skip_student, c_out_student = scalings_for_boundary_conditions(student_timesteps)
|
|
|
|
c_skip_teacher, c_out_teacher, c_in_teacher = [
|
|
append_dims(x, clean_images.ndim) for x in [c_skip_teacher, c_out_teacher, c_in_teacher]
|
|
]
|
|
c_skip_student, c_out_student, c_in_student = [
|
|
append_dims(x, clean_images.ndim) for x in [c_skip_student, c_out_student, c_in_student]
|
|
]
|
|
|
|
with accelerator.accumulate(unet):
|
|
# 5. Get the student unet denoising prediction on the student timesteps
|
|
# Get rng state now to ensure that dropout is synced between the student and teacher models.
|
|
dropout_state = torch.get_rng_state()
|
|
student_model_output = unet(
|
|
c_in_student * student_noisy_images, student_rescaled_timesteps, class_labels=class_labels
|
|
).sample
|
|
# NOTE: currently only support prediction_type == sample, so no need to convert model_output
|
|
student_denoise_output = c_skip_student * student_noisy_images + c_out_student * student_model_output
|
|
|
|
# 6. Get the teacher unet denoising prediction on the teacher timesteps
|
|
with torch.no_grad(), torch.autocast("cuda", dtype=teacher_dtype):
|
|
torch.set_rng_state(dropout_state)
|
|
teacher_model_output = teacher_unet(
|
|
c_in_teacher * teacher_noisy_images, teacher_rescaled_timesteps, class_labels=class_labels
|
|
).sample
|
|
# NOTE: currently only support prediction_type == sample, so no need to convert model_output
|
|
teacher_denoise_output = (
|
|
c_skip_teacher * teacher_noisy_images + c_out_teacher * teacher_model_output
|
|
)
|
|
|
|
# 7. Calculate the weighted Pseudo-Huber loss
|
|
if args.prediction_type == "sample":
|
|
# Note that the loss weights should be those at the (teacher) timestep indices.
|
|
lambda_t = _extract_into_tensor(
|
|
timestep_loss_weights, timestep_indices, (bsz,) + (1,) * (clean_images.ndim - 1)
|
|
)
|
|
loss = lambda_t * (
|
|
torch.sqrt(
|
|
(student_denoise_output.float() - teacher_denoise_output.float()) ** 2 + args.huber_c**2
|
|
)
|
|
- args.huber_c
|
|
)
|
|
loss = loss.mean()
|
|
else:
|
|
raise ValueError(
|
|
f"Unsupported prediction type: {args.prediction_type}. Currently, only `sample` is supported."
|
|
)
|
|
|
|
# 8. Backpropagate on the consistency training loss
|
|
accelerator.backward(loss)
|
|
if accelerator.sync_gradients:
|
|
accelerator.clip_grad_norm_(unet.parameters(), args.max_grad_norm)
|
|
optimizer.step()
|
|
lr_scheduler.step()
|
|
optimizer.zero_grad()
|
|
|
|
# Checks if the accelerator has performed an optimization step behind the scenes
|
|
if accelerator.sync_gradients:
|
|
# 9. Update teacher_unet and ema_unet parameters using unet's parameters.
|
|
teacher_unet.load_state_dict(unet.state_dict())
|
|
if args.use_ema:
|
|
ema_unet.step(unet.parameters())
|
|
progress_bar.update(1)
|
|
global_step += 1
|
|
|
|
if accelerator.is_main_process:
|
|
# 10. Recalculate quantities depending on the global step, if necessary.
|
|
new_discretization_steps = get_discretization_steps(
|
|
global_step,
|
|
args.max_train_steps,
|
|
s_0=args.discretization_s_0,
|
|
s_1=args.discretization_s_1,
|
|
constant=args.constant_discretization_steps,
|
|
)
|
|
current_skip_steps = get_skip_steps(global_step, initial_skip=args.skip_steps)
|
|
if current_skip_steps >= new_discretization_steps:
|
|
raise ValueError(
|
|
f"The current skip steps is {current_skip_steps}, but should be smaller than the current"
|
|
f" number of discretization steps {new_discretization_steps}."
|
|
)
|
|
if new_discretization_steps != current_discretization_steps:
|
|
(
|
|
noise_scheduler,
|
|
current_timesteps,
|
|
timestep_weights,
|
|
timestep_loss_weights,
|
|
) = recalculate_num_discretization_step_values(new_discretization_steps, current_skip_steps)
|
|
current_discretization_steps = new_discretization_steps
|
|
|
|
if global_step % args.checkpointing_steps == 0:
|
|
# _before_ saving state, check if this save would set us over the `checkpoints_total_limit`
|
|
if args.checkpoints_total_limit is not None:
|
|
checkpoints = os.listdir(args.output_dir)
|
|
checkpoints = [d for d in checkpoints if d.startswith("checkpoint")]
|
|
checkpoints = sorted(checkpoints, key=lambda x: int(x.split("-")[1]))
|
|
|
|
# before we save the new checkpoint, we need to have at _most_ `checkpoints_total_limit - 1` checkpoints
|
|
if len(checkpoints) >= args.checkpoints_total_limit:
|
|
num_to_remove = len(checkpoints) - args.checkpoints_total_limit + 1
|
|
removing_checkpoints = checkpoints[0:num_to_remove]
|
|
|
|
logger.info(
|
|
f"{len(checkpoints)} checkpoints already exist, removing {len(removing_checkpoints)} checkpoints"
|
|
)
|
|
logger.info(f"removing checkpoints: {', '.join(removing_checkpoints)}")
|
|
|
|
for removing_checkpoint in removing_checkpoints:
|
|
removing_checkpoint = os.path.join(args.output_dir, removing_checkpoint)
|
|
shutil.rmtree(removing_checkpoint)
|
|
|
|
save_path = os.path.join(args.output_dir, f"checkpoint-{global_step}")
|
|
accelerator.save_state(save_path)
|
|
logger.info(f"Saved state to {save_path}")
|
|
|
|
if global_step % args.validation_steps == 0:
|
|
# NOTE: since we do not use EMA for the teacher model, the teacher parameters and student
|
|
# parameters are the same at this point in time
|
|
log_validation(unet, noise_scheduler, args, accelerator, weight_dtype, global_step, "teacher")
|
|
# teacher_unet.to(dtype=teacher_dtype)
|
|
|
|
if args.use_ema:
|
|
# Store the student unet weights and load the EMA weights.
|
|
ema_unet.store(unet.parameters())
|
|
ema_unet.copy_to(unet.parameters())
|
|
|
|
log_validation(
|
|
unet,
|
|
noise_scheduler,
|
|
args,
|
|
accelerator,
|
|
weight_dtype,
|
|
global_step,
|
|
"ema_student",
|
|
)
|
|
|
|
# Restore student unet weights
|
|
ema_unet.restore(unet.parameters())
|
|
|
|
logs = {"loss": loss.detach().item(), "lr": lr_scheduler.get_last_lr()[0], "step": global_step}
|
|
if args.use_ema:
|
|
logs["ema_decay"] = ema_unet.cur_decay_value
|
|
progress_bar.set_postfix(**logs)
|
|
accelerator.log(logs, step=global_step)
|
|
|
|
if global_step >= args.max_train_steps:
|
|
break
|
|
# progress_bar.close()
|
|
|
|
accelerator.wait_for_everyone()
|
|
if accelerator.is_main_process:
|
|
unet = unwrap_model(unet)
|
|
pipeline = ConsistencyModelPipeline(unet=unet, scheduler=noise_scheduler)
|
|
pipeline.save_pretrained(args.output_dir)
|
|
|
|
# If using EMA, save EMA weights as well.
|
|
if args.use_ema:
|
|
ema_unet.copy_to(unet.parameters())
|
|
|
|
unet.save_pretrained(os.path.join(args.output_dir, "ema_unet"))
|
|
|
|
if args.push_to_hub:
|
|
upload_folder(
|
|
repo_id=repo_id,
|
|
folder_path=args.output_dir,
|
|
commit_message="End of training",
|
|
ignore_patterns=["step_*", "epoch_*"],
|
|
)
|
|
|
|
accelerator.end_training()
|
|
|
|
|
|
if __name__ == "__main__":
|
|
args = parse_args()
|
|
main(args)
|