mirror of
https://github.com/huggingface/diffusers.git
synced 2026-01-27 17:22:53 +03:00
* update
* update
* update
* update
* update
* merge main
* Revert "merge main"
This reverts commit 65efbcead5.
562 lines
21 KiB
Python
562 lines
21 KiB
Python
import gc
|
|
import random
|
|
import tempfile
|
|
import unittest
|
|
|
|
import numpy as np
|
|
import torch
|
|
from transformers import (
|
|
CLIPImageProcessor,
|
|
CLIPVisionConfig,
|
|
CLIPVisionModelWithProjection,
|
|
)
|
|
|
|
import diffusers
|
|
from diffusers import (
|
|
AutoencoderKLTemporalDecoder,
|
|
EulerDiscreteScheduler,
|
|
StableVideoDiffusionPipeline,
|
|
UNetSpatioTemporalConditionModel,
|
|
)
|
|
from diffusers.utils import load_image, logging
|
|
from diffusers.utils.import_utils import is_xformers_available
|
|
|
|
from ...testing_utils import (
|
|
CaptureLogger,
|
|
backend_empty_cache,
|
|
enable_full_determinism,
|
|
floats_tensor,
|
|
numpy_cosine_similarity_distance,
|
|
require_accelerate_version_greater,
|
|
require_accelerator,
|
|
require_torch_accelerator,
|
|
slow,
|
|
torch_device,
|
|
)
|
|
from ..test_pipelines_common import PipelineTesterMixin
|
|
|
|
|
|
enable_full_determinism()
|
|
|
|
|
|
def to_np(tensor):
|
|
if isinstance(tensor, torch.Tensor):
|
|
tensor = tensor.detach().cpu().numpy()
|
|
|
|
return tensor
|
|
|
|
|
|
class StableVideoDiffusionPipelineFastTests(PipelineTesterMixin, unittest.TestCase):
|
|
pipeline_class = StableVideoDiffusionPipeline
|
|
params = frozenset(["image"])
|
|
batch_params = frozenset(["image", "generator"])
|
|
required_optional_params = frozenset(
|
|
[
|
|
"num_inference_steps",
|
|
"generator",
|
|
"latents",
|
|
"return_dict",
|
|
]
|
|
)
|
|
|
|
supports_dduf = False
|
|
|
|
def get_dummy_components(self):
|
|
torch.manual_seed(0)
|
|
unet = UNetSpatioTemporalConditionModel(
|
|
block_out_channels=(32, 64),
|
|
layers_per_block=2,
|
|
sample_size=32,
|
|
in_channels=8,
|
|
out_channels=4,
|
|
down_block_types=(
|
|
"CrossAttnDownBlockSpatioTemporal",
|
|
"DownBlockSpatioTemporal",
|
|
),
|
|
up_block_types=("UpBlockSpatioTemporal", "CrossAttnUpBlockSpatioTemporal"),
|
|
cross_attention_dim=32,
|
|
num_attention_heads=8,
|
|
projection_class_embeddings_input_dim=96,
|
|
addition_time_embed_dim=32,
|
|
)
|
|
scheduler = EulerDiscreteScheduler(
|
|
beta_start=0.00085,
|
|
beta_end=0.012,
|
|
beta_schedule="scaled_linear",
|
|
interpolation_type="linear",
|
|
num_train_timesteps=1000,
|
|
prediction_type="v_prediction",
|
|
sigma_max=700.0,
|
|
sigma_min=0.002,
|
|
steps_offset=1,
|
|
timestep_spacing="leading",
|
|
timestep_type="continuous",
|
|
trained_betas=None,
|
|
use_karras_sigmas=True,
|
|
)
|
|
|
|
torch.manual_seed(0)
|
|
vae = AutoencoderKLTemporalDecoder(
|
|
block_out_channels=[32, 64],
|
|
in_channels=3,
|
|
out_channels=3,
|
|
down_block_types=["DownEncoderBlock2D", "DownEncoderBlock2D"],
|
|
latent_channels=4,
|
|
)
|
|
|
|
torch.manual_seed(0)
|
|
config = CLIPVisionConfig(
|
|
hidden_size=32,
|
|
projection_dim=32,
|
|
num_hidden_layers=5,
|
|
num_attention_heads=4,
|
|
image_size=32,
|
|
intermediate_size=37,
|
|
patch_size=1,
|
|
)
|
|
image_encoder = CLIPVisionModelWithProjection(config)
|
|
|
|
torch.manual_seed(0)
|
|
feature_extractor = CLIPImageProcessor(crop_size=32, size=32)
|
|
components = {
|
|
"unet": unet,
|
|
"image_encoder": image_encoder,
|
|
"scheduler": scheduler,
|
|
"vae": vae,
|
|
"feature_extractor": feature_extractor,
|
|
}
|
|
return components
|
|
|
|
def get_dummy_inputs(self, device, seed=0):
|
|
if str(device).startswith("mps"):
|
|
generator = torch.manual_seed(seed)
|
|
else:
|
|
generator = torch.Generator(device="cpu").manual_seed(seed)
|
|
|
|
image = floats_tensor((1, 3, 32, 32), rng=random.Random(0)).to(device)
|
|
inputs = {
|
|
"generator": generator,
|
|
"image": image,
|
|
"num_inference_steps": 2,
|
|
"output_type": "pt",
|
|
"min_guidance_scale": 1.0,
|
|
"max_guidance_scale": 2.5,
|
|
"num_frames": 2,
|
|
"height": 32,
|
|
"width": 32,
|
|
}
|
|
return inputs
|
|
|
|
@unittest.skip("Deprecated functionality")
|
|
def test_attention_slicing_forward_pass(self):
|
|
pass
|
|
|
|
@unittest.skip("Batched inference works and outputs look correct, but the test is failing")
|
|
def test_inference_batch_single_identical(
|
|
self,
|
|
batch_size=2,
|
|
expected_max_diff=1e-4,
|
|
):
|
|
components = self.get_dummy_components()
|
|
pipe = self.pipeline_class(**components)
|
|
for components in pipe.components.values():
|
|
if hasattr(components, "set_default_attn_processor"):
|
|
components.set_default_attn_processor()
|
|
pipe.to(torch_device)
|
|
|
|
pipe.set_progress_bar_config(disable=None)
|
|
inputs = self.get_dummy_inputs(torch_device)
|
|
|
|
# Reset generator in case it is has been used in self.get_dummy_inputs
|
|
inputs["generator"] = torch.Generator("cpu").manual_seed(0)
|
|
|
|
logger = logging.get_logger(pipe.__module__)
|
|
logger.setLevel(level=diffusers.logging.FATAL)
|
|
|
|
# batchify inputs
|
|
batched_inputs = {}
|
|
batched_inputs.update(inputs)
|
|
|
|
batched_inputs["generator"] = [torch.Generator("cpu").manual_seed(0) for i in range(batch_size)]
|
|
batched_inputs["image"] = torch.cat([inputs["image"]] * batch_size, dim=0)
|
|
|
|
output = pipe(**inputs).frames
|
|
output_batch = pipe(**batched_inputs).frames
|
|
|
|
assert len(output_batch) == batch_size
|
|
|
|
max_diff = np.abs(to_np(output_batch[0]) - to_np(output[0])).max()
|
|
assert max_diff < expected_max_diff
|
|
|
|
@unittest.skip("Test is similar to test_inference_batch_single_identical")
|
|
def test_inference_batch_consistent(self):
|
|
pass
|
|
|
|
def test_np_output_type(self):
|
|
components = self.get_dummy_components()
|
|
pipe = self.pipeline_class(**components)
|
|
for component in pipe.components.values():
|
|
if hasattr(component, "set_default_attn_processor"):
|
|
component.set_default_attn_processor()
|
|
|
|
pipe.to(torch_device)
|
|
pipe.set_progress_bar_config(disable=None)
|
|
|
|
generator_device = "cpu"
|
|
inputs = self.get_dummy_inputs(generator_device)
|
|
inputs["output_type"] = "np"
|
|
output = pipe(**inputs).frames
|
|
self.assertTrue(isinstance(output, np.ndarray))
|
|
self.assertEqual(len(output.shape), 5)
|
|
|
|
def test_dict_tuple_outputs_equivalent(self, expected_max_difference=1e-4):
|
|
components = self.get_dummy_components()
|
|
pipe = self.pipeline_class(**components)
|
|
for component in pipe.components.values():
|
|
if hasattr(component, "set_default_attn_processor"):
|
|
component.set_default_attn_processor()
|
|
|
|
pipe.to(torch_device)
|
|
pipe.set_progress_bar_config(disable=None)
|
|
|
|
generator_device = "cpu"
|
|
output = pipe(**self.get_dummy_inputs(generator_device)).frames[0]
|
|
output_tuple = pipe(**self.get_dummy_inputs(generator_device), return_dict=False)[0]
|
|
|
|
max_diff = np.abs(to_np(output) - to_np(output_tuple)).max()
|
|
self.assertLess(max_diff, expected_max_difference)
|
|
|
|
@unittest.skip("Test is currently failing")
|
|
def test_float16_inference(self, expected_max_diff=5e-2):
|
|
components = self.get_dummy_components()
|
|
pipe = self.pipeline_class(**components)
|
|
for component in pipe.components.values():
|
|
if hasattr(component, "set_default_attn_processor"):
|
|
component.set_default_attn_processor()
|
|
|
|
pipe.to(torch_device)
|
|
pipe.set_progress_bar_config(disable=None)
|
|
|
|
components = self.get_dummy_components()
|
|
pipe_fp16 = self.pipeline_class(**components)
|
|
for component in pipe_fp16.components.values():
|
|
if hasattr(component, "set_default_attn_processor"):
|
|
component.set_default_attn_processor()
|
|
|
|
pipe_fp16.to(torch_device, torch.float16)
|
|
pipe_fp16.set_progress_bar_config(disable=None)
|
|
|
|
inputs = self.get_dummy_inputs(torch_device)
|
|
output = pipe(**inputs).frames[0]
|
|
|
|
fp16_inputs = self.get_dummy_inputs(torch_device)
|
|
output_fp16 = pipe_fp16(**fp16_inputs).frames[0]
|
|
|
|
max_diff = np.abs(to_np(output) - to_np(output_fp16)).max()
|
|
self.assertLess(max_diff, expected_max_diff, "The outputs of the fp16 and fp32 pipelines are too different.")
|
|
|
|
@unittest.skipIf(torch_device not in ["cuda", "xpu"], reason="float16 requires CUDA or XPU")
|
|
@require_accelerator
|
|
def test_save_load_float16(self, expected_max_diff=1e-2):
|
|
components = self.get_dummy_components()
|
|
for name, module in components.items():
|
|
if hasattr(module, "half"):
|
|
components[name] = module.to(torch_device).half()
|
|
|
|
pipe = self.pipeline_class(**components)
|
|
for component in pipe.components.values():
|
|
if hasattr(component, "set_default_attn_processor"):
|
|
component.set_default_attn_processor()
|
|
pipe.to(torch_device)
|
|
pipe.set_progress_bar_config(disable=None)
|
|
|
|
inputs = self.get_dummy_inputs(torch_device)
|
|
output = pipe(**inputs).frames[0]
|
|
|
|
with tempfile.TemporaryDirectory() as tmpdir:
|
|
pipe.save_pretrained(tmpdir)
|
|
pipe_loaded = self.pipeline_class.from_pretrained(tmpdir, torch_dtype=torch.float16)
|
|
for component in pipe_loaded.components.values():
|
|
if hasattr(component, "set_default_attn_processor"):
|
|
component.set_default_attn_processor()
|
|
pipe_loaded.to(torch_device)
|
|
pipe_loaded.set_progress_bar_config(disable=None)
|
|
|
|
for name, component in pipe_loaded.components.items():
|
|
if hasattr(component, "dtype"):
|
|
self.assertTrue(
|
|
component.dtype == torch.float16,
|
|
f"`{name}.dtype` switched from `float16` to {component.dtype} after loading.",
|
|
)
|
|
|
|
inputs = self.get_dummy_inputs(torch_device)
|
|
output_loaded = pipe_loaded(**inputs).frames[0]
|
|
max_diff = np.abs(to_np(output) - to_np(output_loaded)).max()
|
|
self.assertLess(
|
|
max_diff, expected_max_diff, "The output of the fp16 pipeline changed after saving and loading."
|
|
)
|
|
|
|
def test_save_load_optional_components(self, expected_max_difference=1e-4):
|
|
if not hasattr(self.pipeline_class, "_optional_components"):
|
|
return
|
|
|
|
components = self.get_dummy_components()
|
|
pipe = self.pipeline_class(**components)
|
|
for component in pipe.components.values():
|
|
if hasattr(component, "set_default_attn_processor"):
|
|
component.set_default_attn_processor()
|
|
pipe.to(torch_device)
|
|
pipe.set_progress_bar_config(disable=None)
|
|
|
|
# set all optional components to None
|
|
for optional_component in pipe._optional_components:
|
|
setattr(pipe, optional_component, None)
|
|
|
|
generator_device = "cpu"
|
|
inputs = self.get_dummy_inputs(generator_device)
|
|
output = pipe(**inputs).frames[0]
|
|
|
|
with tempfile.TemporaryDirectory() as tmpdir:
|
|
pipe.save_pretrained(tmpdir, safe_serialization=False)
|
|
pipe_loaded = self.pipeline_class.from_pretrained(tmpdir)
|
|
for component in pipe_loaded.components.values():
|
|
if hasattr(component, "set_default_attn_processor"):
|
|
component.set_default_attn_processor()
|
|
pipe_loaded.to(torch_device)
|
|
pipe_loaded.set_progress_bar_config(disable=None)
|
|
|
|
for optional_component in pipe._optional_components:
|
|
self.assertTrue(
|
|
getattr(pipe_loaded, optional_component) is None,
|
|
f"`{optional_component}` did not stay set to None after loading.",
|
|
)
|
|
|
|
inputs = self.get_dummy_inputs(generator_device)
|
|
output_loaded = pipe_loaded(**inputs).frames[0]
|
|
|
|
max_diff = np.abs(to_np(output) - to_np(output_loaded)).max()
|
|
self.assertLess(max_diff, expected_max_difference)
|
|
|
|
def test_save_load_local(self, expected_max_difference=9e-4):
|
|
components = self.get_dummy_components()
|
|
pipe = self.pipeline_class(**components)
|
|
for component in pipe.components.values():
|
|
if hasattr(component, "set_default_attn_processor"):
|
|
component.set_default_attn_processor()
|
|
|
|
pipe.to(torch_device)
|
|
pipe.set_progress_bar_config(disable=None)
|
|
|
|
inputs = self.get_dummy_inputs(torch_device)
|
|
output = pipe(**inputs).frames[0]
|
|
|
|
logger = logging.get_logger("diffusers.pipelines.pipeline_utils")
|
|
logger.setLevel(diffusers.logging.INFO)
|
|
|
|
with tempfile.TemporaryDirectory() as tmpdir:
|
|
pipe.save_pretrained(tmpdir, safe_serialization=False)
|
|
|
|
with CaptureLogger(logger) as cap_logger:
|
|
pipe_loaded = self.pipeline_class.from_pretrained(tmpdir)
|
|
|
|
for name in pipe_loaded.components.keys():
|
|
if name not in pipe_loaded._optional_components:
|
|
assert name in str(cap_logger)
|
|
|
|
pipe_loaded.to(torch_device)
|
|
pipe_loaded.set_progress_bar_config(disable=None)
|
|
|
|
inputs = self.get_dummy_inputs(torch_device)
|
|
output_loaded = pipe_loaded(**inputs).frames[0]
|
|
|
|
max_diff = np.abs(to_np(output) - to_np(output_loaded)).max()
|
|
self.assertLess(max_diff, expected_max_difference)
|
|
|
|
@require_accelerator
|
|
def test_to_device(self):
|
|
components = self.get_dummy_components()
|
|
pipe = self.pipeline_class(**components)
|
|
pipe.set_progress_bar_config(disable=None)
|
|
|
|
pipe.to("cpu")
|
|
model_devices = [
|
|
component.device.type for component in pipe.components.values() if hasattr(component, "device")
|
|
]
|
|
self.assertTrue(all(device == "cpu" for device in model_devices))
|
|
|
|
output_cpu = pipe(**self.get_dummy_inputs("cpu")).frames[0]
|
|
self.assertTrue(np.isnan(output_cpu).sum() == 0)
|
|
|
|
pipe.to(torch_device)
|
|
model_devices = [
|
|
component.device.type for component in pipe.components.values() if hasattr(component, "device")
|
|
]
|
|
self.assertTrue(all(device == torch_device for device in model_devices))
|
|
|
|
output_device = pipe(**self.get_dummy_inputs(torch_device)).frames[0]
|
|
self.assertTrue(np.isnan(to_np(output_device)).sum() == 0)
|
|
|
|
def test_to_dtype(self):
|
|
components = self.get_dummy_components()
|
|
pipe = self.pipeline_class(**components)
|
|
pipe.set_progress_bar_config(disable=None)
|
|
|
|
model_dtypes = [component.dtype for component in pipe.components.values() if hasattr(component, "dtype")]
|
|
self.assertTrue(all(dtype == torch.float32 for dtype in model_dtypes))
|
|
|
|
pipe.to(dtype=torch.float16)
|
|
model_dtypes = [component.dtype for component in pipe.components.values() if hasattr(component, "dtype")]
|
|
self.assertTrue(all(dtype == torch.float16 for dtype in model_dtypes))
|
|
|
|
@require_accelerator
|
|
@require_accelerate_version_greater("0.14.0")
|
|
def test_sequential_cpu_offload_forward_pass(self, expected_max_diff=1e-4):
|
|
components = self.get_dummy_components()
|
|
pipe = self.pipeline_class(**components)
|
|
for component in pipe.components.values():
|
|
if hasattr(component, "set_default_attn_processor"):
|
|
component.set_default_attn_processor()
|
|
pipe.to(torch_device)
|
|
pipe.set_progress_bar_config(disable=None)
|
|
|
|
generator_device = "cpu"
|
|
inputs = self.get_dummy_inputs(generator_device)
|
|
output_without_offload = pipe(**inputs).frames[0]
|
|
|
|
pipe.enable_sequential_cpu_offload(device=torch_device)
|
|
|
|
inputs = self.get_dummy_inputs(generator_device)
|
|
output_with_offload = pipe(**inputs).frames[0]
|
|
|
|
max_diff = np.abs(to_np(output_with_offload) - to_np(output_without_offload)).max()
|
|
self.assertLess(max_diff, expected_max_diff, "CPU offloading should not affect the inference results")
|
|
|
|
@require_accelerator
|
|
@require_accelerate_version_greater("0.17.0")
|
|
def test_model_cpu_offload_forward_pass(self, expected_max_diff=2e-4):
|
|
generator_device = "cpu"
|
|
components = self.get_dummy_components()
|
|
pipe = self.pipeline_class(**components)
|
|
|
|
for component in pipe.components.values():
|
|
if hasattr(component, "set_default_attn_processor"):
|
|
component.set_default_attn_processor()
|
|
|
|
pipe = pipe.to(torch_device)
|
|
pipe.set_progress_bar_config(disable=None)
|
|
|
|
inputs = self.get_dummy_inputs(generator_device)
|
|
output_without_offload = pipe(**inputs).frames[0]
|
|
|
|
pipe.enable_model_cpu_offload(device=torch_device)
|
|
inputs = self.get_dummy_inputs(generator_device)
|
|
output_with_offload = pipe(**inputs).frames[0]
|
|
|
|
max_diff = np.abs(to_np(output_with_offload) - to_np(output_without_offload)).max()
|
|
self.assertLess(max_diff, expected_max_diff, "CPU offloading should not affect the inference results")
|
|
offloaded_modules = [
|
|
v
|
|
for k, v in pipe.components.items()
|
|
if isinstance(v, torch.nn.Module) and k not in pipe._exclude_from_cpu_offload
|
|
]
|
|
(
|
|
self.assertTrue(all(v.device.type == "cpu" for v in offloaded_modules)),
|
|
f"Not offloaded: {[v for v in offloaded_modules if v.device.type != 'cpu']}",
|
|
)
|
|
|
|
@unittest.skipIf(
|
|
torch_device != "cuda" or not is_xformers_available(),
|
|
reason="XFormers attention is only available with CUDA and `xformers` installed",
|
|
)
|
|
def test_xformers_attention_forwardGenerator_pass(self):
|
|
expected_max_diff = 9e-4
|
|
|
|
if not self.test_xformers_attention:
|
|
return
|
|
|
|
components = self.get_dummy_components()
|
|
pipe = self.pipeline_class(**components)
|
|
for component in pipe.components.values():
|
|
if hasattr(component, "set_default_attn_processor"):
|
|
component.set_default_attn_processor()
|
|
pipe.to(torch_device)
|
|
pipe.set_progress_bar_config(disable=None)
|
|
|
|
inputs = self.get_dummy_inputs(torch_device)
|
|
output_without_offload = pipe(**inputs).frames[0]
|
|
output_without_offload = (
|
|
output_without_offload.cpu() if torch.is_tensor(output_without_offload) else output_without_offload
|
|
)
|
|
|
|
pipe.enable_xformers_memory_efficient_attention()
|
|
inputs = self.get_dummy_inputs(torch_device)
|
|
output_with_offload = pipe(**inputs).frames[0]
|
|
output_with_offload = (
|
|
output_with_offload.cpu() if torch.is_tensor(output_with_offload) else output_without_offload
|
|
)
|
|
|
|
max_diff = np.abs(to_np(output_with_offload) - to_np(output_without_offload)).max()
|
|
self.assertLess(max_diff, expected_max_diff, "XFormers attention should not affect the inference results")
|
|
|
|
def test_disable_cfg(self):
|
|
components = self.get_dummy_components()
|
|
pipe = self.pipeline_class(**components)
|
|
for component in pipe.components.values():
|
|
if hasattr(component, "set_default_attn_processor"):
|
|
component.set_default_attn_processor()
|
|
|
|
pipe.to(torch_device)
|
|
pipe.set_progress_bar_config(disable=None)
|
|
|
|
generator_device = "cpu"
|
|
inputs = self.get_dummy_inputs(generator_device)
|
|
inputs["max_guidance_scale"] = 1.0
|
|
output = pipe(**inputs).frames
|
|
self.assertEqual(len(output.shape), 5)
|
|
|
|
|
|
@slow
|
|
@require_torch_accelerator
|
|
class StableVideoDiffusionPipelineSlowTests(unittest.TestCase):
|
|
def setUp(self):
|
|
# clean up the VRAM before each test
|
|
super().setUp()
|
|
gc.collect()
|
|
backend_empty_cache(torch_device)
|
|
|
|
def tearDown(self):
|
|
# clean up the VRAM after each test
|
|
super().tearDown()
|
|
gc.collect()
|
|
backend_empty_cache(torch_device)
|
|
|
|
def test_sd_video(self):
|
|
pipe = StableVideoDiffusionPipeline.from_pretrained(
|
|
"stabilityai/stable-video-diffusion-img2vid",
|
|
variant="fp16",
|
|
torch_dtype=torch.float16,
|
|
)
|
|
pipe.enable_model_cpu_offload(device=torch_device)
|
|
pipe.set_progress_bar_config(disable=None)
|
|
image = load_image(
|
|
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/pix2pix/cat_6.png?download=true"
|
|
)
|
|
|
|
generator = torch.Generator("cpu").manual_seed(0)
|
|
num_frames = 3
|
|
|
|
output = pipe(
|
|
image=image,
|
|
num_frames=num_frames,
|
|
generator=generator,
|
|
num_inference_steps=3,
|
|
output_type="np",
|
|
)
|
|
|
|
image = output.frames[0]
|
|
assert image.shape == (num_frames, 576, 1024, 3)
|
|
|
|
image_slice = image[0, -3:, -3:, -1]
|
|
expected_slice = np.array([0.8592, 0.8645, 0.8499, 0.8722, 0.8769, 0.8421, 0.8557, 0.8528, 0.8285])
|
|
assert numpy_cosine_similarity_distance(image_slice.flatten(), expected_slice.flatten()) < 1e-3
|