* add ChronoEdit * add ref to original function & remove wan2.2 logics * Update src/diffusers/pipelines/chronoedit/pipeline_chronoedit.py Co-authored-by: YiYi Xu <yixu310@gmail.com> * Update src/diffusers/pipelines/chronoedit/pipeline_chronoedit.py Co-authored-by: YiYi Xu <yixu310@gmail.com> * add ChronoeEdit test * add docs * add docs * make fix-copies * fix chronoedit test --------- Co-authored-by: wjay <wjay@nvidia.com> Co-authored-by: YiYi Xu <yixu310@gmail.com> Co-authored-by: Sayak Paul <spsayakpaul@gmail.com>
1.8 KiB
ChronoEditTransformer3DModel
A Diffusion Transformer model for 3D video-like data from ChronoEdit: Towards Temporal Reasoning for Image Editing and World Simulation from NVIDIA and University of Toronto, by Jay Zhangjie Wu, Xuanchi Ren, Tianchang Shen, Tianshi Cao, Kai He, Yifan Lu, Ruiyuan Gao, Enze Xie, Shiyi Lan, Jose M. Alvarez, Jun Gao, Sanja Fidler, Zian Wang, Huan Ling.
TL;DR: ChronoEdit reframes image editing as a video generation task, using input and edited images as start/end frames to leverage pretrained video models with temporal consistency. A temporal reasoning stage introduces reasoning tokens to ensure physically plausible edits and visualize the editing trajectory.
The model can be loaded with the following code snippet.
from diffusers import ChronoEditTransformer3DModel
transformer = ChronoEditTransformer3DModel.from_pretrained("nvidia/ChronoEdit-14B-Diffusers", subfolder="transformer", torch_dtype=torch.bfloat16)
ChronoEditTransformer3DModel
autodoc ChronoEditTransformer3DModel
Transformer2DModelOutput
autodoc models.modeling_outputs.Transformer2DModelOutput