mirror of
https://github.com/huggingface/diffusers.git
synced 2026-01-29 07:22:12 +03:00
481 lines
17 KiB
Python
481 lines
17 KiB
Python
# coding=utf-8
|
|
# Copyright 2025 HuggingFace Inc.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
|
|
|
|
import gc
|
|
import unittest
|
|
|
|
import numpy as np
|
|
import torch
|
|
from transformers import (
|
|
T5EncoderModel,
|
|
T5Tokenizer,
|
|
)
|
|
|
|
from diffusers import (
|
|
AutoencoderOobleck,
|
|
CosineDPMSolverMultistepScheduler,
|
|
StableAudioDiTModel,
|
|
StableAudioPipeline,
|
|
StableAudioProjectionModel,
|
|
)
|
|
from diffusers.utils import is_xformers_available
|
|
from diffusers.utils.testing_utils import (
|
|
Expectations,
|
|
backend_empty_cache,
|
|
enable_full_determinism,
|
|
nightly,
|
|
require_torch_accelerator,
|
|
torch_device,
|
|
)
|
|
|
|
from ..pipeline_params import TEXT_TO_AUDIO_BATCH_PARAMS
|
|
from ..test_pipelines_common import PipelineTesterMixin
|
|
|
|
|
|
enable_full_determinism()
|
|
|
|
|
|
class StableAudioPipelineFastTests(PipelineTesterMixin, unittest.TestCase):
|
|
pipeline_class = StableAudioPipeline
|
|
params = frozenset(
|
|
[
|
|
"prompt",
|
|
"audio_end_in_s",
|
|
"audio_start_in_s",
|
|
"guidance_scale",
|
|
"negative_prompt",
|
|
"prompt_embeds",
|
|
"negative_prompt_embeds",
|
|
"initial_audio_waveforms",
|
|
]
|
|
)
|
|
batch_params = TEXT_TO_AUDIO_BATCH_PARAMS
|
|
required_optional_params = frozenset(
|
|
[
|
|
"num_inference_steps",
|
|
"num_waveforms_per_prompt",
|
|
"generator",
|
|
"latents",
|
|
"output_type",
|
|
"return_dict",
|
|
"callback",
|
|
"callback_steps",
|
|
]
|
|
)
|
|
# There is not xformers version of the StableAudioPipeline custom attention processor
|
|
test_xformers_attention = False
|
|
supports_dduf = False
|
|
|
|
def get_dummy_components(self):
|
|
torch.manual_seed(0)
|
|
transformer = StableAudioDiTModel(
|
|
sample_size=4,
|
|
in_channels=3,
|
|
num_layers=2,
|
|
attention_head_dim=4,
|
|
num_key_value_attention_heads=2,
|
|
out_channels=3,
|
|
cross_attention_dim=4,
|
|
time_proj_dim=8,
|
|
global_states_input_dim=8,
|
|
cross_attention_input_dim=4,
|
|
)
|
|
scheduler = CosineDPMSolverMultistepScheduler(
|
|
solver_order=2,
|
|
prediction_type="v_prediction",
|
|
sigma_data=1.0,
|
|
sigma_schedule="exponential",
|
|
)
|
|
torch.manual_seed(0)
|
|
vae = AutoencoderOobleck(
|
|
encoder_hidden_size=6,
|
|
downsampling_ratios=[1, 2],
|
|
decoder_channels=3,
|
|
decoder_input_channels=3,
|
|
audio_channels=2,
|
|
channel_multiples=[2, 4],
|
|
sampling_rate=4,
|
|
)
|
|
torch.manual_seed(0)
|
|
t5_repo_id = "hf-internal-testing/tiny-random-T5ForConditionalGeneration"
|
|
text_encoder = T5EncoderModel.from_pretrained(t5_repo_id)
|
|
tokenizer = T5Tokenizer.from_pretrained(t5_repo_id, truncation=True, model_max_length=25)
|
|
|
|
torch.manual_seed(0)
|
|
projection_model = StableAudioProjectionModel(
|
|
text_encoder_dim=text_encoder.config.d_model,
|
|
conditioning_dim=4,
|
|
min_value=0,
|
|
max_value=32,
|
|
)
|
|
|
|
components = {
|
|
"transformer": transformer,
|
|
"scheduler": scheduler,
|
|
"vae": vae,
|
|
"text_encoder": text_encoder,
|
|
"tokenizer": tokenizer,
|
|
"projection_model": projection_model,
|
|
}
|
|
return components
|
|
|
|
def get_dummy_inputs(self, device, seed=0):
|
|
if str(device).startswith("mps"):
|
|
generator = torch.manual_seed(seed)
|
|
else:
|
|
generator = torch.Generator(device=device).manual_seed(seed)
|
|
inputs = {
|
|
"prompt": "A hammer hitting a wooden surface",
|
|
"generator": generator,
|
|
"num_inference_steps": 2,
|
|
"guidance_scale": 6.0,
|
|
}
|
|
return inputs
|
|
|
|
def test_save_load_local(self):
|
|
# increase tolerance from 1e-4 -> 7e-3 to account for large composite model
|
|
super().test_save_load_local(expected_max_difference=7e-3)
|
|
|
|
def test_save_load_optional_components(self):
|
|
# increase tolerance from 1e-4 -> 7e-3 to account for large composite model
|
|
super().test_save_load_optional_components(expected_max_difference=7e-3)
|
|
|
|
def test_stable_audio_ddim(self):
|
|
device = "cpu" # ensure determinism for the device-dependent torch.Generator
|
|
|
|
components = self.get_dummy_components()
|
|
stable_audio_pipe = StableAudioPipeline(**components)
|
|
stable_audio_pipe = stable_audio_pipe.to(torch_device)
|
|
stable_audio_pipe.set_progress_bar_config(disable=None)
|
|
|
|
inputs = self.get_dummy_inputs(device)
|
|
output = stable_audio_pipe(**inputs)
|
|
audio = output.audios[0]
|
|
|
|
assert audio.ndim == 2
|
|
assert audio.shape == (2, 7)
|
|
|
|
def test_stable_audio_without_prompts(self):
|
|
components = self.get_dummy_components()
|
|
stable_audio_pipe = StableAudioPipeline(**components)
|
|
stable_audio_pipe = stable_audio_pipe.to(torch_device)
|
|
stable_audio_pipe = stable_audio_pipe.to(torch_device)
|
|
stable_audio_pipe.set_progress_bar_config(disable=None)
|
|
|
|
inputs = self.get_dummy_inputs(torch_device)
|
|
inputs["prompt"] = 3 * [inputs["prompt"]]
|
|
|
|
# forward
|
|
output = stable_audio_pipe(**inputs)
|
|
audio_1 = output.audios[0]
|
|
|
|
inputs = self.get_dummy_inputs(torch_device)
|
|
prompt = 3 * [inputs.pop("prompt")]
|
|
|
|
text_inputs = stable_audio_pipe.tokenizer(
|
|
prompt,
|
|
padding="max_length",
|
|
max_length=stable_audio_pipe.tokenizer.model_max_length,
|
|
truncation=True,
|
|
return_tensors="pt",
|
|
).to(torch_device)
|
|
text_input_ids = text_inputs.input_ids
|
|
attention_mask = text_inputs.attention_mask
|
|
|
|
prompt_embeds = stable_audio_pipe.text_encoder(
|
|
text_input_ids,
|
|
attention_mask=attention_mask,
|
|
)[0]
|
|
|
|
inputs["prompt_embeds"] = prompt_embeds
|
|
inputs["attention_mask"] = attention_mask
|
|
|
|
# forward
|
|
output = stable_audio_pipe(**inputs)
|
|
audio_2 = output.audios[0]
|
|
|
|
assert (audio_1 - audio_2).abs().max() < 1e-2
|
|
|
|
def test_stable_audio_negative_without_prompts(self):
|
|
components = self.get_dummy_components()
|
|
stable_audio_pipe = StableAudioPipeline(**components)
|
|
stable_audio_pipe = stable_audio_pipe.to(torch_device)
|
|
stable_audio_pipe.set_progress_bar_config(disable=None)
|
|
|
|
inputs = self.get_dummy_inputs(torch_device)
|
|
negative_prompt = 3 * ["this is a negative prompt"]
|
|
inputs["negative_prompt"] = negative_prompt
|
|
inputs["prompt"] = 3 * [inputs["prompt"]]
|
|
|
|
# forward
|
|
output = stable_audio_pipe(**inputs)
|
|
audio_1 = output.audios[0]
|
|
|
|
inputs = self.get_dummy_inputs(torch_device)
|
|
prompt = 3 * [inputs.pop("prompt")]
|
|
|
|
text_inputs = stable_audio_pipe.tokenizer(
|
|
prompt,
|
|
padding="max_length",
|
|
max_length=stable_audio_pipe.tokenizer.model_max_length,
|
|
truncation=True,
|
|
return_tensors="pt",
|
|
).to(torch_device)
|
|
text_input_ids = text_inputs.input_ids
|
|
attention_mask = text_inputs.attention_mask
|
|
|
|
prompt_embeds = stable_audio_pipe.text_encoder(
|
|
text_input_ids,
|
|
attention_mask=attention_mask,
|
|
)[0]
|
|
|
|
inputs["prompt_embeds"] = prompt_embeds
|
|
inputs["attention_mask"] = attention_mask
|
|
|
|
negative_text_inputs = stable_audio_pipe.tokenizer(
|
|
negative_prompt,
|
|
padding="max_length",
|
|
max_length=stable_audio_pipe.tokenizer.model_max_length,
|
|
truncation=True,
|
|
return_tensors="pt",
|
|
).to(torch_device)
|
|
negative_text_input_ids = negative_text_inputs.input_ids
|
|
negative_attention_mask = negative_text_inputs.attention_mask
|
|
|
|
negative_prompt_embeds = stable_audio_pipe.text_encoder(
|
|
negative_text_input_ids,
|
|
attention_mask=negative_attention_mask,
|
|
)[0]
|
|
|
|
inputs["negative_prompt_embeds"] = negative_prompt_embeds
|
|
inputs["negative_attention_mask"] = negative_attention_mask
|
|
|
|
# forward
|
|
output = stable_audio_pipe(**inputs)
|
|
audio_2 = output.audios[0]
|
|
|
|
assert (audio_1 - audio_2).abs().max() < 1e-2
|
|
|
|
def test_stable_audio_negative_prompt(self):
|
|
device = "cpu" # ensure determinism for the device-dependent torch.Generator
|
|
components = self.get_dummy_components()
|
|
stable_audio_pipe = StableAudioPipeline(**components)
|
|
stable_audio_pipe = stable_audio_pipe.to(device)
|
|
stable_audio_pipe.set_progress_bar_config(disable=None)
|
|
|
|
inputs = self.get_dummy_inputs(device)
|
|
negative_prompt = "egg cracking"
|
|
output = stable_audio_pipe(**inputs, negative_prompt=negative_prompt)
|
|
audio = output.audios[0]
|
|
|
|
assert audio.ndim == 2
|
|
assert audio.shape == (2, 7)
|
|
|
|
def test_stable_audio_num_waveforms_per_prompt(self):
|
|
device = "cpu" # ensure determinism for the device-dependent torch.Generator
|
|
components = self.get_dummy_components()
|
|
stable_audio_pipe = StableAudioPipeline(**components)
|
|
stable_audio_pipe = stable_audio_pipe.to(device)
|
|
stable_audio_pipe.set_progress_bar_config(disable=None)
|
|
|
|
prompt = "A hammer hitting a wooden surface"
|
|
|
|
# test num_waveforms_per_prompt=1 (default)
|
|
audios = stable_audio_pipe(prompt, num_inference_steps=2).audios
|
|
|
|
assert audios.shape == (1, 2, 7)
|
|
|
|
# test num_waveforms_per_prompt=1 (default) for batch of prompts
|
|
batch_size = 2
|
|
audios = stable_audio_pipe([prompt] * batch_size, num_inference_steps=2).audios
|
|
|
|
assert audios.shape == (batch_size, 2, 7)
|
|
|
|
# test num_waveforms_per_prompt for single prompt
|
|
num_waveforms_per_prompt = 2
|
|
audios = stable_audio_pipe(
|
|
prompt, num_inference_steps=2, num_waveforms_per_prompt=num_waveforms_per_prompt
|
|
).audios
|
|
|
|
assert audios.shape == (num_waveforms_per_prompt, 2, 7)
|
|
|
|
# test num_waveforms_per_prompt for batch of prompts
|
|
batch_size = 2
|
|
audios = stable_audio_pipe(
|
|
[prompt] * batch_size, num_inference_steps=2, num_waveforms_per_prompt=num_waveforms_per_prompt
|
|
).audios
|
|
|
|
assert audios.shape == (batch_size * num_waveforms_per_prompt, 2, 7)
|
|
|
|
def test_stable_audio_audio_end_in_s(self):
|
|
device = "cpu" # ensure determinism for the device-dependent torch.Generator
|
|
components = self.get_dummy_components()
|
|
stable_audio_pipe = StableAudioPipeline(**components)
|
|
stable_audio_pipe = stable_audio_pipe.to(torch_device)
|
|
stable_audio_pipe.set_progress_bar_config(disable=None)
|
|
|
|
inputs = self.get_dummy_inputs(device)
|
|
output = stable_audio_pipe(audio_end_in_s=1.5, **inputs)
|
|
audio = output.audios[0]
|
|
|
|
assert audio.ndim == 2
|
|
assert audio.shape[1] / stable_audio_pipe.vae.sampling_rate == 1.5
|
|
|
|
output = stable_audio_pipe(audio_end_in_s=1.1875, **inputs)
|
|
audio = output.audios[0]
|
|
|
|
assert audio.ndim == 2
|
|
assert audio.shape[1] / stable_audio_pipe.vae.sampling_rate == 1.0
|
|
|
|
def test_attention_slicing_forward_pass(self):
|
|
self._test_attention_slicing_forward_pass(test_mean_pixel_difference=False)
|
|
|
|
def test_inference_batch_single_identical(self):
|
|
self._test_inference_batch_single_identical(expected_max_diff=5e-4)
|
|
|
|
@unittest.skipIf(
|
|
torch_device != "cuda" or not is_xformers_available(),
|
|
reason="XFormers attention is only available with CUDA and `xformers` installed",
|
|
)
|
|
def test_xformers_attention_forwardGenerator_pass(self):
|
|
self._test_xformers_attention_forwardGenerator_pass(test_mean_pixel_difference=False)
|
|
|
|
def test_stable_audio_input_waveform(self):
|
|
device = "cpu" # ensure determinism for the device-dependent torch.Generator
|
|
components = self.get_dummy_components()
|
|
stable_audio_pipe = StableAudioPipeline(**components)
|
|
stable_audio_pipe = stable_audio_pipe.to(device)
|
|
stable_audio_pipe.set_progress_bar_config(disable=None)
|
|
|
|
prompt = "A hammer hitting a wooden surface"
|
|
|
|
initial_audio_waveforms = torch.ones((1, 5))
|
|
|
|
# test raises error when no sampling rate
|
|
with self.assertRaises(ValueError):
|
|
audios = stable_audio_pipe(
|
|
prompt, num_inference_steps=2, initial_audio_waveforms=initial_audio_waveforms
|
|
).audios
|
|
|
|
# test raises error when wrong sampling rate
|
|
with self.assertRaises(ValueError):
|
|
audios = stable_audio_pipe(
|
|
prompt,
|
|
num_inference_steps=2,
|
|
initial_audio_waveforms=initial_audio_waveforms,
|
|
initial_audio_sampling_rate=stable_audio_pipe.vae.sampling_rate - 1,
|
|
).audios
|
|
|
|
audios = stable_audio_pipe(
|
|
prompt,
|
|
num_inference_steps=2,
|
|
initial_audio_waveforms=initial_audio_waveforms,
|
|
initial_audio_sampling_rate=stable_audio_pipe.vae.sampling_rate,
|
|
).audios
|
|
assert audios.shape == (1, 2, 7)
|
|
|
|
# test works with num_waveforms_per_prompt
|
|
num_waveforms_per_prompt = 2
|
|
audios = stable_audio_pipe(
|
|
prompt,
|
|
num_inference_steps=2,
|
|
num_waveforms_per_prompt=num_waveforms_per_prompt,
|
|
initial_audio_waveforms=initial_audio_waveforms,
|
|
initial_audio_sampling_rate=stable_audio_pipe.vae.sampling_rate,
|
|
).audios
|
|
|
|
assert audios.shape == (num_waveforms_per_prompt, 2, 7)
|
|
|
|
# test num_waveforms_per_prompt for batch of prompts and input audio (two channels)
|
|
batch_size = 2
|
|
initial_audio_waveforms = torch.ones((batch_size, 2, 5))
|
|
audios = stable_audio_pipe(
|
|
[prompt] * batch_size,
|
|
num_inference_steps=2,
|
|
num_waveforms_per_prompt=num_waveforms_per_prompt,
|
|
initial_audio_waveforms=initial_audio_waveforms,
|
|
initial_audio_sampling_rate=stable_audio_pipe.vae.sampling_rate,
|
|
).audios
|
|
|
|
assert audios.shape == (batch_size * num_waveforms_per_prompt, 2, 7)
|
|
|
|
@unittest.skip("Not supported yet")
|
|
def test_sequential_cpu_offload_forward_pass(self):
|
|
pass
|
|
|
|
@unittest.skip("Not supported yet")
|
|
def test_sequential_offload_forward_pass_twice(self):
|
|
pass
|
|
|
|
@unittest.skip("Test not supported because `rotary_embed_dim` doesn't have any sensible default.")
|
|
def test_encode_prompt_works_in_isolation(self):
|
|
pass
|
|
|
|
|
|
@nightly
|
|
@require_torch_accelerator
|
|
class StableAudioPipelineIntegrationTests(unittest.TestCase):
|
|
def setUp(self):
|
|
super().setUp()
|
|
gc.collect()
|
|
backend_empty_cache(torch_device)
|
|
|
|
def tearDown(self):
|
|
super().tearDown()
|
|
gc.collect()
|
|
backend_empty_cache(torch_device)
|
|
|
|
def get_inputs(self, device, generator_device="cpu", dtype=torch.float32, seed=0):
|
|
generator = torch.Generator(device=generator_device).manual_seed(seed)
|
|
latents = np.random.RandomState(seed).standard_normal((1, 64, 1024))
|
|
latents = torch.from_numpy(latents).to(device=device, dtype=dtype)
|
|
inputs = {
|
|
"prompt": "A hammer hitting a wooden surface",
|
|
"latents": latents,
|
|
"generator": generator,
|
|
"num_inference_steps": 3,
|
|
"audio_end_in_s": 30,
|
|
"guidance_scale": 2.5,
|
|
}
|
|
return inputs
|
|
|
|
def test_stable_audio(self):
|
|
stable_audio_pipe = StableAudioPipeline.from_pretrained("stabilityai/stable-audio-open-1.0")
|
|
stable_audio_pipe = stable_audio_pipe.to(torch_device)
|
|
stable_audio_pipe.set_progress_bar_config(disable=None)
|
|
|
|
inputs = self.get_inputs(torch_device)
|
|
inputs["num_inference_steps"] = 25
|
|
audio = stable_audio_pipe(**inputs).audios[0]
|
|
|
|
assert audio.ndim == 2
|
|
assert audio.shape == (2, int(inputs["audio_end_in_s"] * stable_audio_pipe.vae.sampling_rate))
|
|
# check the portion of the generated audio with the largest dynamic range (reduces flakiness)
|
|
audio_slice = audio[0, 447590:447600]
|
|
# fmt: off
|
|
expected_slices = Expectations(
|
|
{
|
|
("xpu", 3): np.array([-0.0285, 0.1083, 0.1863, 0.3165, 0.5312, 0.6971, 0.6958, 0.6177, 0.5598, 0.5048]),
|
|
("cuda", 7): np.array([-0.0278, 0.1096, 0.1877, 0.3178, 0.5329, 0.6990, 0.6972, 0.6186, 0.5608, 0.5060]),
|
|
("cuda", 8): np.array([-0.0285, 0.1082, 0.1862, 0.3163, 0.5306, 0.6964, 0.6953, 0.6172, 0.5593, 0.5044]),
|
|
}
|
|
)
|
|
# fmt: on
|
|
|
|
expected_slice = expected_slices.get_expectation()
|
|
max_diff = np.abs(expected_slice - audio_slice.detach().cpu().numpy()).max()
|
|
assert max_diff < 1.5e-3
|