mirror of
https://github.com/huggingface/diffusers.git
synced 2026-01-29 07:22:12 +03:00
* adjust to get CI test cases passed on XPU Signed-off-by: Liu, Kaixuan <kaixuan.liu@intel.com> * fix format issue Signed-off-by: Liu, Kaixuan <kaixuan.liu@intel.com> * Apply style fixes --------- Signed-off-by: Liu, Kaixuan <kaixuan.liu@intel.com> Co-authored-by: github-actions[bot] <github-actions[bot]@users.noreply.github.com> Co-authored-by: Aryan <aryan@huggingface.co>
280 lines
9.5 KiB
Python
280 lines
9.5 KiB
Python
# coding=utf-8
|
|
# Copyright 2023 HuggingFace Inc.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
|
|
import gc
|
|
import random
|
|
import unittest
|
|
|
|
import numpy as np
|
|
import torch
|
|
from PIL import Image
|
|
from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer
|
|
|
|
from diffusers import (
|
|
AutoencoderKL,
|
|
DPMSolverMultistepScheduler,
|
|
LEditsPPPipelineStableDiffusion,
|
|
UNet2DConditionModel,
|
|
)
|
|
from diffusers.utils.testing_utils import (
|
|
Expectations,
|
|
backend_empty_cache,
|
|
enable_full_determinism,
|
|
floats_tensor,
|
|
load_image,
|
|
require_torch_accelerator,
|
|
skip_mps,
|
|
slow,
|
|
torch_device,
|
|
)
|
|
|
|
|
|
enable_full_determinism()
|
|
|
|
|
|
@skip_mps
|
|
class LEditsPPPipelineStableDiffusionFastTests(unittest.TestCase):
|
|
pipeline_class = LEditsPPPipelineStableDiffusion
|
|
|
|
def get_dummy_components(self):
|
|
torch.manual_seed(0)
|
|
unet = UNet2DConditionModel(
|
|
block_out_channels=(32, 64, 64),
|
|
layers_per_block=2,
|
|
sample_size=32,
|
|
in_channels=4,
|
|
out_channels=4,
|
|
down_block_types=("DownBlock2D", "CrossAttnDownBlock2D", "CrossAttnDownBlock2D"),
|
|
up_block_types=("CrossAttnUpBlock2D", "CrossAttnUpBlock2D", "UpBlock2D"),
|
|
cross_attention_dim=32,
|
|
)
|
|
scheduler = DPMSolverMultistepScheduler(algorithm_type="sde-dpmsolver++", solver_order=2)
|
|
torch.manual_seed(0)
|
|
vae = AutoencoderKL(
|
|
block_out_channels=[32, 64],
|
|
in_channels=3,
|
|
out_channels=3,
|
|
down_block_types=["DownEncoderBlock2D", "DownEncoderBlock2D"],
|
|
up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D"],
|
|
latent_channels=4,
|
|
)
|
|
torch.manual_seed(0)
|
|
text_encoder_config = CLIPTextConfig(
|
|
bos_token_id=0,
|
|
eos_token_id=2,
|
|
hidden_size=32,
|
|
intermediate_size=37,
|
|
layer_norm_eps=1e-05,
|
|
num_attention_heads=4,
|
|
num_hidden_layers=5,
|
|
pad_token_id=1,
|
|
vocab_size=1000,
|
|
)
|
|
text_encoder = CLIPTextModel(text_encoder_config)
|
|
tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip")
|
|
|
|
components = {
|
|
"unet": unet,
|
|
"scheduler": scheduler,
|
|
"vae": vae,
|
|
"text_encoder": text_encoder,
|
|
"tokenizer": tokenizer,
|
|
"safety_checker": None,
|
|
"feature_extractor": None,
|
|
}
|
|
return components
|
|
|
|
def get_dummy_inputs(self, device, seed=0):
|
|
if str(device).startswith("mps"):
|
|
generator = torch.manual_seed(seed)
|
|
else:
|
|
generator = torch.Generator(device=device).manual_seed(seed)
|
|
inputs = {
|
|
"generator": generator,
|
|
"editing_prompt": ["wearing glasses", "sunshine"],
|
|
"reverse_editing_direction": [False, True],
|
|
"edit_guidance_scale": [10.0, 5.0],
|
|
}
|
|
return inputs
|
|
|
|
def get_dummy_inversion_inputs(self, device, seed=0):
|
|
images = floats_tensor((2, 3, 32, 32), rng=random.Random(0)).cpu().permute(0, 2, 3, 1)
|
|
images = 255 * images
|
|
image_1 = Image.fromarray(np.uint8(images[0])).convert("RGB")
|
|
image_2 = Image.fromarray(np.uint8(images[1])).convert("RGB")
|
|
|
|
if str(device).startswith("mps"):
|
|
generator = torch.manual_seed(seed)
|
|
else:
|
|
generator = torch.Generator(device=device).manual_seed(seed)
|
|
|
|
inputs = {
|
|
"image": [image_1, image_2],
|
|
"source_prompt": "",
|
|
"source_guidance_scale": 3.5,
|
|
"num_inversion_steps": 20,
|
|
"skip": 0.15,
|
|
"generator": generator,
|
|
}
|
|
return inputs
|
|
|
|
def test_ledits_pp_inversion(self):
|
|
device = "cpu" # ensure determinism for the device-dependent torch.Generator
|
|
components = self.get_dummy_components()
|
|
sd_pipe = LEditsPPPipelineStableDiffusion(**components)
|
|
sd_pipe = sd_pipe.to(torch_device)
|
|
sd_pipe.set_progress_bar_config(disable=None)
|
|
|
|
inputs = self.get_dummy_inversion_inputs(device)
|
|
inputs["image"] = inputs["image"][0]
|
|
sd_pipe.invert(**inputs)
|
|
assert sd_pipe.init_latents.shape == (
|
|
1,
|
|
4,
|
|
int(32 / sd_pipe.vae_scale_factor),
|
|
int(32 / sd_pipe.vae_scale_factor),
|
|
)
|
|
|
|
latent_slice = sd_pipe.init_latents[0, -1, -3:, -3:].to(device)
|
|
|
|
expected_slice = np.array([-0.9084, -0.0367, 0.2940, 0.0839, 0.6890, 0.2651, -0.7104, 2.1090, -0.7822])
|
|
assert np.abs(latent_slice.flatten() - expected_slice).max() < 1e-3
|
|
|
|
def test_ledits_pp_inversion_batch(self):
|
|
device = "cpu" # ensure determinism for the device-dependent torch.Generator
|
|
components = self.get_dummy_components()
|
|
sd_pipe = LEditsPPPipelineStableDiffusion(**components)
|
|
sd_pipe = sd_pipe.to(torch_device)
|
|
sd_pipe.set_progress_bar_config(disable=None)
|
|
|
|
inputs = self.get_dummy_inversion_inputs(device)
|
|
sd_pipe.invert(**inputs)
|
|
assert sd_pipe.init_latents.shape == (
|
|
2,
|
|
4,
|
|
int(32 / sd_pipe.vae_scale_factor),
|
|
int(32 / sd_pipe.vae_scale_factor),
|
|
)
|
|
|
|
latent_slice = sd_pipe.init_latents[0, -1, -3:, -3:].to(device)
|
|
|
|
expected_slice = np.array([0.2528, 0.1458, -0.2166, 0.4565, -0.5657, -1.0286, -0.9961, 0.5933, 1.1173])
|
|
assert np.abs(latent_slice.flatten() - expected_slice).max() < 1e-3
|
|
|
|
latent_slice = sd_pipe.init_latents[1, -1, -3:, -3:].to(device)
|
|
|
|
expected_slice = np.array([-0.0796, 2.0583, 0.5501, 0.5358, 0.0282, -0.2803, -1.0470, 0.7023, -0.0072])
|
|
assert np.abs(latent_slice.flatten() - expected_slice).max() < 1e-3
|
|
|
|
def test_ledits_pp_warmup_steps(self):
|
|
device = "cpu" # ensure determinism for the device-dependent torch.Generator
|
|
components = self.get_dummy_components()
|
|
pipe = LEditsPPPipelineStableDiffusion(**components)
|
|
pipe = pipe.to(torch_device)
|
|
pipe.set_progress_bar_config(disable=None)
|
|
|
|
inversion_inputs = self.get_dummy_inversion_inputs(device)
|
|
pipe.invert(**inversion_inputs)
|
|
|
|
inputs = self.get_dummy_inputs(device)
|
|
|
|
inputs["edit_warmup_steps"] = [0, 5]
|
|
pipe(**inputs).images
|
|
|
|
inputs["edit_warmup_steps"] = [5, 0]
|
|
pipe(**inputs).images
|
|
|
|
inputs["edit_warmup_steps"] = [5, 10]
|
|
pipe(**inputs).images
|
|
|
|
inputs["edit_warmup_steps"] = [10, 5]
|
|
pipe(**inputs).images
|
|
|
|
|
|
@slow
|
|
@require_torch_accelerator
|
|
class LEditsPPPipelineStableDiffusionSlowTests(unittest.TestCase):
|
|
def setUp(self):
|
|
super().setUp()
|
|
gc.collect()
|
|
backend_empty_cache(torch_device)
|
|
|
|
def tearDown(self):
|
|
super().tearDown()
|
|
gc.collect()
|
|
backend_empty_cache(torch_device)
|
|
|
|
@classmethod
|
|
def setUpClass(cls):
|
|
raw_image = load_image(
|
|
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/pix2pix/cat_6.png"
|
|
)
|
|
raw_image = raw_image.convert("RGB").resize((512, 512))
|
|
cls.raw_image = raw_image
|
|
|
|
def test_ledits_pp_editing(self):
|
|
pipe = LEditsPPPipelineStableDiffusion.from_pretrained(
|
|
"stable-diffusion-v1-5/stable-diffusion-v1-5", safety_checker=None, torch_dtype=torch.float16
|
|
)
|
|
pipe = pipe.to(torch_device)
|
|
pipe.set_progress_bar_config(disable=None)
|
|
|
|
generator = torch.manual_seed(0)
|
|
_ = pipe.invert(image=self.raw_image, generator=generator)
|
|
generator = torch.manual_seed(0)
|
|
inputs = {
|
|
"generator": generator,
|
|
"editing_prompt": ["cat", "dog"],
|
|
"reverse_editing_direction": [True, False],
|
|
"edit_guidance_scale": [5.0, 5.0],
|
|
"edit_threshold": [0.8, 0.8],
|
|
}
|
|
reconstruction = pipe(**inputs, output_type="np").images[0]
|
|
|
|
output_slice = reconstruction[150:153, 140:143, -1]
|
|
output_slice = output_slice.flatten()
|
|
expected_slices = Expectations(
|
|
{
|
|
("xpu", 3): np.array(
|
|
[
|
|
0.9511719,
|
|
0.94140625,
|
|
0.87597656,
|
|
0.9472656,
|
|
0.9296875,
|
|
0.8378906,
|
|
0.94433594,
|
|
0.91503906,
|
|
0.8491211,
|
|
]
|
|
),
|
|
("cuda", 7): np.array(
|
|
[
|
|
0.9453125,
|
|
0.93310547,
|
|
0.84521484,
|
|
0.94628906,
|
|
0.9111328,
|
|
0.80859375,
|
|
0.93847656,
|
|
0.9042969,
|
|
0.8144531,
|
|
]
|
|
),
|
|
}
|
|
)
|
|
expected_slice = expected_slices.get_expectation()
|
|
assert np.abs(output_slice - expected_slice).max() < 1e-2
|