mirror of
https://github.com/huggingface/diffusers.git
synced 2026-01-29 07:22:12 +03:00
351 lines
13 KiB
Python
351 lines
13 KiB
Python
# Copyright 2025 The HuggingFace Team.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
|
|
import inspect
|
|
import json
|
|
import os
|
|
import tempfile
|
|
import unittest
|
|
|
|
import numpy as np
|
|
import torch
|
|
from transformers import AutoTokenizer, T5EncoderModel
|
|
|
|
from diffusers import AutoencoderKLCosmos, CosmosTextToWorldPipeline, CosmosTransformer3DModel, EDMEulerScheduler
|
|
from diffusers.utils.testing_utils import enable_full_determinism, torch_device
|
|
|
|
from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_IMAGE_PARAMS, TEXT_TO_IMAGE_PARAMS
|
|
from ..test_pipelines_common import PipelineTesterMixin, to_np
|
|
from .cosmos_guardrail import DummyCosmosSafetyChecker
|
|
|
|
|
|
enable_full_determinism()
|
|
|
|
|
|
class CosmosTextToWorldPipelineWrapper(CosmosTextToWorldPipeline):
|
|
@staticmethod
|
|
def from_pretrained(*args, **kwargs):
|
|
kwargs["safety_checker"] = DummyCosmosSafetyChecker()
|
|
return CosmosTextToWorldPipeline.from_pretrained(*args, **kwargs)
|
|
|
|
|
|
class CosmosTextToWorldPipelineFastTests(PipelineTesterMixin, unittest.TestCase):
|
|
pipeline_class = CosmosTextToWorldPipelineWrapper
|
|
params = TEXT_TO_IMAGE_PARAMS - {"cross_attention_kwargs"}
|
|
batch_params = TEXT_TO_IMAGE_BATCH_PARAMS
|
|
image_params = TEXT_TO_IMAGE_IMAGE_PARAMS
|
|
image_latents_params = TEXT_TO_IMAGE_IMAGE_PARAMS
|
|
required_optional_params = frozenset(
|
|
[
|
|
"num_inference_steps",
|
|
"generator",
|
|
"latents",
|
|
"return_dict",
|
|
"callback_on_step_end",
|
|
"callback_on_step_end_tensor_inputs",
|
|
]
|
|
)
|
|
supports_dduf = False
|
|
test_xformers_attention = False
|
|
test_layerwise_casting = True
|
|
test_group_offloading = True
|
|
|
|
def get_dummy_components(self):
|
|
torch.manual_seed(0)
|
|
transformer = CosmosTransformer3DModel(
|
|
in_channels=4,
|
|
out_channels=4,
|
|
num_attention_heads=2,
|
|
attention_head_dim=16,
|
|
num_layers=2,
|
|
mlp_ratio=2,
|
|
text_embed_dim=32,
|
|
adaln_lora_dim=4,
|
|
max_size=(4, 32, 32),
|
|
patch_size=(1, 2, 2),
|
|
rope_scale=(2.0, 1.0, 1.0),
|
|
concat_padding_mask=True,
|
|
extra_pos_embed_type="learnable",
|
|
)
|
|
|
|
torch.manual_seed(0)
|
|
vae = AutoencoderKLCosmos(
|
|
in_channels=3,
|
|
out_channels=3,
|
|
latent_channels=4,
|
|
encoder_block_out_channels=(8, 8, 8, 8),
|
|
decode_block_out_channels=(8, 8, 8, 8),
|
|
attention_resolutions=(8,),
|
|
resolution=64,
|
|
num_layers=2,
|
|
patch_size=4,
|
|
patch_type="haar",
|
|
scaling_factor=1.0,
|
|
spatial_compression_ratio=4,
|
|
temporal_compression_ratio=4,
|
|
)
|
|
|
|
torch.manual_seed(0)
|
|
scheduler = EDMEulerScheduler(
|
|
sigma_min=0.002,
|
|
sigma_max=80,
|
|
sigma_data=0.5,
|
|
sigma_schedule="karras",
|
|
num_train_timesteps=1000,
|
|
prediction_type="epsilon",
|
|
rho=7.0,
|
|
final_sigmas_type="sigma_min",
|
|
)
|
|
text_encoder = T5EncoderModel.from_pretrained("hf-internal-testing/tiny-random-t5")
|
|
tokenizer = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-t5")
|
|
|
|
components = {
|
|
"transformer": transformer,
|
|
"vae": vae,
|
|
"scheduler": scheduler,
|
|
"text_encoder": text_encoder,
|
|
"tokenizer": tokenizer,
|
|
# We cannot run the Cosmos Guardrail for fast tests due to the large model size
|
|
"safety_checker": DummyCosmosSafetyChecker(),
|
|
}
|
|
return components
|
|
|
|
def get_dummy_inputs(self, device, seed=0):
|
|
if str(device).startswith("mps"):
|
|
generator = torch.manual_seed(seed)
|
|
else:
|
|
generator = torch.Generator(device=device).manual_seed(seed)
|
|
|
|
inputs = {
|
|
"prompt": "dance monkey",
|
|
"negative_prompt": "bad quality",
|
|
"generator": generator,
|
|
"num_inference_steps": 2,
|
|
"guidance_scale": 3.0,
|
|
"height": 32,
|
|
"width": 32,
|
|
"num_frames": 9,
|
|
"max_sequence_length": 16,
|
|
"output_type": "pt",
|
|
}
|
|
|
|
return inputs
|
|
|
|
def test_inference(self):
|
|
device = "cpu"
|
|
|
|
components = self.get_dummy_components()
|
|
pipe = self.pipeline_class(**components)
|
|
pipe.to(device)
|
|
pipe.set_progress_bar_config(disable=None)
|
|
|
|
inputs = self.get_dummy_inputs(device)
|
|
video = pipe(**inputs).frames
|
|
generated_video = video[0]
|
|
|
|
self.assertEqual(generated_video.shape, (9, 3, 32, 32))
|
|
expected_video = torch.randn(9, 3, 32, 32)
|
|
max_diff = np.abs(generated_video - expected_video).max()
|
|
self.assertLessEqual(max_diff, 1e10)
|
|
|
|
def test_callback_inputs(self):
|
|
sig = inspect.signature(self.pipeline_class.__call__)
|
|
has_callback_tensor_inputs = "callback_on_step_end_tensor_inputs" in sig.parameters
|
|
has_callback_step_end = "callback_on_step_end" in sig.parameters
|
|
|
|
if not (has_callback_tensor_inputs and has_callback_step_end):
|
|
return
|
|
|
|
components = self.get_dummy_components()
|
|
pipe = self.pipeline_class(**components)
|
|
pipe = pipe.to(torch_device)
|
|
pipe.set_progress_bar_config(disable=None)
|
|
self.assertTrue(
|
|
hasattr(pipe, "_callback_tensor_inputs"),
|
|
f" {self.pipeline_class} should have `_callback_tensor_inputs` that defines a list of tensor variables its callback function can use as inputs",
|
|
)
|
|
|
|
def callback_inputs_subset(pipe, i, t, callback_kwargs):
|
|
# iterate over callback args
|
|
for tensor_name, tensor_value in callback_kwargs.items():
|
|
# check that we're only passing in allowed tensor inputs
|
|
assert tensor_name in pipe._callback_tensor_inputs
|
|
|
|
return callback_kwargs
|
|
|
|
def callback_inputs_all(pipe, i, t, callback_kwargs):
|
|
for tensor_name in pipe._callback_tensor_inputs:
|
|
assert tensor_name in callback_kwargs
|
|
|
|
# iterate over callback args
|
|
for tensor_name, tensor_value in callback_kwargs.items():
|
|
# check that we're only passing in allowed tensor inputs
|
|
assert tensor_name in pipe._callback_tensor_inputs
|
|
|
|
return callback_kwargs
|
|
|
|
inputs = self.get_dummy_inputs(torch_device)
|
|
|
|
# Test passing in a subset
|
|
inputs["callback_on_step_end"] = callback_inputs_subset
|
|
inputs["callback_on_step_end_tensor_inputs"] = ["latents"]
|
|
output = pipe(**inputs)[0]
|
|
|
|
# Test passing in a everything
|
|
inputs["callback_on_step_end"] = callback_inputs_all
|
|
inputs["callback_on_step_end_tensor_inputs"] = pipe._callback_tensor_inputs
|
|
output = pipe(**inputs)[0]
|
|
|
|
def callback_inputs_change_tensor(pipe, i, t, callback_kwargs):
|
|
is_last = i == (pipe.num_timesteps - 1)
|
|
if is_last:
|
|
callback_kwargs["latents"] = torch.zeros_like(callback_kwargs["latents"])
|
|
return callback_kwargs
|
|
|
|
inputs["callback_on_step_end"] = callback_inputs_change_tensor
|
|
inputs["callback_on_step_end_tensor_inputs"] = pipe._callback_tensor_inputs
|
|
output = pipe(**inputs)[0]
|
|
assert output.abs().sum() < 1e10
|
|
|
|
def test_inference_batch_single_identical(self):
|
|
self._test_inference_batch_single_identical(batch_size=3, expected_max_diff=1e-2)
|
|
|
|
def test_attention_slicing_forward_pass(
|
|
self, test_max_difference=True, test_mean_pixel_difference=True, expected_max_diff=1e-3
|
|
):
|
|
if not self.test_attention_slicing:
|
|
return
|
|
|
|
components = self.get_dummy_components()
|
|
pipe = self.pipeline_class(**components)
|
|
for component in pipe.components.values():
|
|
if hasattr(component, "set_default_attn_processor"):
|
|
component.set_default_attn_processor()
|
|
pipe.to(torch_device)
|
|
pipe.set_progress_bar_config(disable=None)
|
|
|
|
generator_device = "cpu"
|
|
inputs = self.get_dummy_inputs(generator_device)
|
|
output_without_slicing = pipe(**inputs)[0]
|
|
|
|
pipe.enable_attention_slicing(slice_size=1)
|
|
inputs = self.get_dummy_inputs(generator_device)
|
|
output_with_slicing1 = pipe(**inputs)[0]
|
|
|
|
pipe.enable_attention_slicing(slice_size=2)
|
|
inputs = self.get_dummy_inputs(generator_device)
|
|
output_with_slicing2 = pipe(**inputs)[0]
|
|
|
|
if test_max_difference:
|
|
max_diff1 = np.abs(to_np(output_with_slicing1) - to_np(output_without_slicing)).max()
|
|
max_diff2 = np.abs(to_np(output_with_slicing2) - to_np(output_without_slicing)).max()
|
|
self.assertLess(
|
|
max(max_diff1, max_diff2),
|
|
expected_max_diff,
|
|
"Attention slicing should not affect the inference results",
|
|
)
|
|
|
|
def test_vae_tiling(self, expected_diff_max: float = 0.2):
|
|
generator_device = "cpu"
|
|
components = self.get_dummy_components()
|
|
|
|
pipe = self.pipeline_class(**components)
|
|
pipe.to("cpu")
|
|
pipe.set_progress_bar_config(disable=None)
|
|
|
|
# Without tiling
|
|
inputs = self.get_dummy_inputs(generator_device)
|
|
inputs["height"] = inputs["width"] = 128
|
|
output_without_tiling = pipe(**inputs)[0]
|
|
|
|
# With tiling
|
|
pipe.vae.enable_tiling(
|
|
tile_sample_min_height=96,
|
|
tile_sample_min_width=96,
|
|
tile_sample_stride_height=64,
|
|
tile_sample_stride_width=64,
|
|
)
|
|
inputs = self.get_dummy_inputs(generator_device)
|
|
inputs["height"] = inputs["width"] = 128
|
|
output_with_tiling = pipe(**inputs)[0]
|
|
|
|
self.assertLess(
|
|
(to_np(output_without_tiling) - to_np(output_with_tiling)).max(),
|
|
expected_diff_max,
|
|
"VAE tiling should not affect the inference results",
|
|
)
|
|
|
|
def test_save_load_optional_components(self, expected_max_difference=1e-4):
|
|
self.pipeline_class._optional_components.remove("safety_checker")
|
|
super().test_save_load_optional_components(expected_max_difference=expected_max_difference)
|
|
self.pipeline_class._optional_components.append("safety_checker")
|
|
|
|
def test_serialization_with_variants(self):
|
|
components = self.get_dummy_components()
|
|
pipe = self.pipeline_class(**components)
|
|
model_components = [
|
|
component_name
|
|
for component_name, component in pipe.components.items()
|
|
if isinstance(component, torch.nn.Module)
|
|
]
|
|
model_components.remove("safety_checker")
|
|
variant = "fp16"
|
|
|
|
with tempfile.TemporaryDirectory() as tmpdir:
|
|
pipe.save_pretrained(tmpdir, variant=variant, safe_serialization=False)
|
|
|
|
with open(f"{tmpdir}/model_index.json", "r") as f:
|
|
config = json.load(f)
|
|
|
|
for subfolder in os.listdir(tmpdir):
|
|
if not os.path.isfile(subfolder) and subfolder in model_components:
|
|
folder_path = os.path.join(tmpdir, subfolder)
|
|
is_folder = os.path.isdir(folder_path) and subfolder in config
|
|
assert is_folder and any(p.split(".")[1].startswith(variant) for p in os.listdir(folder_path))
|
|
|
|
def test_torch_dtype_dict(self):
|
|
components = self.get_dummy_components()
|
|
if not components:
|
|
self.skipTest("No dummy components defined.")
|
|
|
|
pipe = self.pipeline_class(**components)
|
|
|
|
specified_key = next(iter(components.keys()))
|
|
|
|
with tempfile.TemporaryDirectory(ignore_cleanup_errors=True) as tmpdirname:
|
|
pipe.save_pretrained(tmpdirname, safe_serialization=False)
|
|
torch_dtype_dict = {specified_key: torch.bfloat16, "default": torch.float16}
|
|
loaded_pipe = self.pipeline_class.from_pretrained(
|
|
tmpdirname, safety_checker=DummyCosmosSafetyChecker(), torch_dtype=torch_dtype_dict
|
|
)
|
|
|
|
for name, component in loaded_pipe.components.items():
|
|
if name == "safety_checker":
|
|
continue
|
|
if isinstance(component, torch.nn.Module) and hasattr(component, "dtype"):
|
|
expected_dtype = torch_dtype_dict.get(name, torch_dtype_dict.get("default", torch.float32))
|
|
self.assertEqual(
|
|
component.dtype,
|
|
expected_dtype,
|
|
f"Component '{name}' has dtype {component.dtype} but expected {expected_dtype}",
|
|
)
|
|
|
|
@unittest.skip(
|
|
"The pipeline should not be runnable without a safety checker. The test creates a pipeline without passing in "
|
|
"a safety checker, which makes the pipeline default to the actual Cosmos Guardrail. The Cosmos Guardrail is "
|
|
"too large and slow to run on CI."
|
|
)
|
|
def test_encode_prompt_works_in_isolation(self):
|
|
pass
|