1
0
mirror of https://github.com/huggingface/diffusers.git synced 2026-01-29 07:22:12 +03:00
Files
diffusers/tests/models/transformers/test_models_transformer_lumina.py
Sayak Paul 62cce3045d [chore] change to 2025 licensing for remaining (#11741)
change to 2025 licensing for remaining
2025-06-18 20:56:00 +05:30

113 lines
3.1 KiB
Python

# coding=utf-8
# Copyright 2025 HuggingFace Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import unittest
import torch
from diffusers import LuminaNextDiT2DModel
from diffusers.utils.testing_utils import (
enable_full_determinism,
torch_device,
)
from ..test_modeling_common import ModelTesterMixin
enable_full_determinism()
class LuminaNextDiT2DModelTransformerTests(ModelTesterMixin, unittest.TestCase):
model_class = LuminaNextDiT2DModel
main_input_name = "hidden_states"
uses_custom_attn_processor = True
@property
def dummy_input(self):
"""
Args:
None
Returns:
Dict: Dictionary of dummy input tensors
"""
batch_size = 2 # N
num_channels = 4 # C
height = width = 16 # H, W
embedding_dim = 32 # D
sequence_length = 16 # L
hidden_states = torch.randn((batch_size, num_channels, height, width)).to(torch_device)
encoder_hidden_states = torch.randn((batch_size, sequence_length, embedding_dim)).to(torch_device)
timestep = torch.rand(size=(batch_size,)).to(torch_device)
encoder_mask = torch.randn(size=(batch_size, sequence_length)).to(torch_device)
image_rotary_emb = torch.randn((384, 384, 4)).to(torch_device)
return {
"hidden_states": hidden_states,
"encoder_hidden_states": encoder_hidden_states,
"timestep": timestep,
"encoder_mask": encoder_mask,
"image_rotary_emb": image_rotary_emb,
"cross_attention_kwargs": {},
}
@property
def input_shape(self):
"""
Args:
None
Returns:
Tuple: (int, int, int)
"""
return (4, 16, 16)
@property
def output_shape(self):
"""
Args:
None
Returns:
Tuple: (int, int, int)
"""
return (4, 16, 16)
def prepare_init_args_and_inputs_for_common(self):
"""
Args:
None
Returns:
Tuple: (Dict, Dict)
"""
init_dict = {
"sample_size": 16,
"patch_size": 2,
"in_channels": 4,
"hidden_size": 24,
"num_layers": 2,
"num_attention_heads": 3,
"num_kv_heads": 1,
"multiple_of": 16,
"ffn_dim_multiplier": None,
"norm_eps": 1e-5,
"learn_sigma": False,
"qk_norm": True,
"cross_attention_dim": 32,
"scaling_factor": 1.0,
}
inputs_dict = self.dummy_input
return init_dict, inputs_dict