1
0
mirror of https://github.com/huggingface/diffusers.git synced 2026-01-29 07:22:12 +03:00
Files
diffusers/tests/models/transformers/test_models_transformer_consisid.py
Sayak Paul 62cce3045d [chore] change to 2025 licensing for remaining (#11741)
change to 2025 licensing for remaining
2025-06-18 20:56:00 +05:30

106 lines
3.3 KiB
Python

# coding=utf-8
# Copyright 2025 HuggingFace Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import unittest
import torch
from diffusers import ConsisIDTransformer3DModel
from diffusers.utils.testing_utils import (
enable_full_determinism,
torch_device,
)
from ..test_modeling_common import ModelTesterMixin
enable_full_determinism()
class ConsisIDTransformerTests(ModelTesterMixin, unittest.TestCase):
model_class = ConsisIDTransformer3DModel
main_input_name = "hidden_states"
uses_custom_attn_processor = True
@property
def dummy_input(self):
batch_size = 2
num_channels = 4
num_frames = 1
height = 8
width = 8
embedding_dim = 8
sequence_length = 8
hidden_states = torch.randn((batch_size, num_frames, num_channels, height, width)).to(torch_device)
encoder_hidden_states = torch.randn((batch_size, sequence_length, embedding_dim)).to(torch_device)
timestep = torch.randint(0, 1000, size=(batch_size,)).to(torch_device)
id_vit_hidden = [torch.ones([batch_size, 2, 2]).to(torch_device)] * 1
id_cond = torch.ones(batch_size, 2).to(torch_device)
return {
"hidden_states": hidden_states,
"encoder_hidden_states": encoder_hidden_states,
"timestep": timestep,
"id_vit_hidden": id_vit_hidden,
"id_cond": id_cond,
}
@property
def input_shape(self):
return (1, 4, 8, 8)
@property
def output_shape(self):
return (1, 4, 8, 8)
def prepare_init_args_and_inputs_for_common(self):
init_dict = {
"num_attention_heads": 2,
"attention_head_dim": 8,
"in_channels": 4,
"out_channels": 4,
"time_embed_dim": 2,
"text_embed_dim": 8,
"num_layers": 1,
"sample_width": 8,
"sample_height": 8,
"sample_frames": 8,
"patch_size": 2,
"temporal_compression_ratio": 4,
"max_text_seq_length": 8,
"cross_attn_interval": 1,
"is_kps": False,
"is_train_face": True,
"cross_attn_dim_head": 1,
"cross_attn_num_heads": 1,
"LFE_id_dim": 2,
"LFE_vit_dim": 2,
"LFE_depth": 5,
"LFE_dim_head": 8,
"LFE_num_heads": 2,
"LFE_num_id_token": 1,
"LFE_num_querie": 1,
"LFE_output_dim": 10,
"LFE_ff_mult": 1,
"LFE_num_scale": 1,
}
inputs_dict = self.dummy_input
return init_dict, inputs_dict
def test_gradient_checkpointing_is_applied(self):
expected_set = {"ConsisIDTransformer3DModel"}
super().test_gradient_checkpointing_is_applied(expected_set=expected_set)