mirror of
https://github.com/huggingface/diffusers.git
synced 2026-01-29 07:22:12 +03:00
180 lines
5.8 KiB
Python
180 lines
5.8 KiB
Python
# coding=utf-8
|
|
# Copyright 2025 HuggingFace Inc.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
|
|
import unittest
|
|
|
|
import torch
|
|
|
|
from diffusers import AutoencoderKLCogVideoX
|
|
from diffusers.utils.testing_utils import (
|
|
enable_full_determinism,
|
|
floats_tensor,
|
|
torch_device,
|
|
)
|
|
|
|
from ..test_modeling_common import ModelTesterMixin, UNetTesterMixin
|
|
|
|
|
|
enable_full_determinism()
|
|
|
|
|
|
class AutoencoderKLCogVideoXTests(ModelTesterMixin, UNetTesterMixin, unittest.TestCase):
|
|
model_class = AutoencoderKLCogVideoX
|
|
main_input_name = "sample"
|
|
base_precision = 1e-2
|
|
|
|
def get_autoencoder_kl_cogvideox_config(self):
|
|
return {
|
|
"in_channels": 3,
|
|
"out_channels": 3,
|
|
"down_block_types": (
|
|
"CogVideoXDownBlock3D",
|
|
"CogVideoXDownBlock3D",
|
|
"CogVideoXDownBlock3D",
|
|
"CogVideoXDownBlock3D",
|
|
),
|
|
"up_block_types": (
|
|
"CogVideoXUpBlock3D",
|
|
"CogVideoXUpBlock3D",
|
|
"CogVideoXUpBlock3D",
|
|
"CogVideoXUpBlock3D",
|
|
),
|
|
"block_out_channels": (8, 8, 8, 8),
|
|
"latent_channels": 4,
|
|
"layers_per_block": 1,
|
|
"norm_num_groups": 2,
|
|
"temporal_compression_ratio": 4,
|
|
}
|
|
|
|
@property
|
|
def dummy_input(self):
|
|
batch_size = 4
|
|
num_frames = 8
|
|
num_channels = 3
|
|
sizes = (16, 16)
|
|
|
|
image = floats_tensor((batch_size, num_channels, num_frames) + sizes).to(torch_device)
|
|
|
|
return {"sample": image}
|
|
|
|
@property
|
|
def input_shape(self):
|
|
return (3, 8, 16, 16)
|
|
|
|
@property
|
|
def output_shape(self):
|
|
return (3, 8, 16, 16)
|
|
|
|
def prepare_init_args_and_inputs_for_common(self):
|
|
init_dict = self.get_autoencoder_kl_cogvideox_config()
|
|
inputs_dict = self.dummy_input
|
|
return init_dict, inputs_dict
|
|
|
|
def test_enable_disable_tiling(self):
|
|
init_dict, inputs_dict = self.prepare_init_args_and_inputs_for_common()
|
|
|
|
torch.manual_seed(0)
|
|
model = self.model_class(**init_dict).to(torch_device)
|
|
|
|
inputs_dict.update({"return_dict": False})
|
|
|
|
torch.manual_seed(0)
|
|
output_without_tiling = model(**inputs_dict, generator=torch.manual_seed(0))[0]
|
|
|
|
torch.manual_seed(0)
|
|
model.enable_tiling()
|
|
output_with_tiling = model(**inputs_dict, generator=torch.manual_seed(0))[0]
|
|
|
|
self.assertLess(
|
|
(output_without_tiling.detach().cpu().numpy() - output_with_tiling.detach().cpu().numpy()).max(),
|
|
0.5,
|
|
"VAE tiling should not affect the inference results",
|
|
)
|
|
|
|
torch.manual_seed(0)
|
|
model.disable_tiling()
|
|
output_without_tiling_2 = model(**inputs_dict, generator=torch.manual_seed(0))[0]
|
|
|
|
self.assertEqual(
|
|
output_without_tiling.detach().cpu().numpy().all(),
|
|
output_without_tiling_2.detach().cpu().numpy().all(),
|
|
"Without tiling outputs should match with the outputs when tiling is manually disabled.",
|
|
)
|
|
|
|
def test_enable_disable_slicing(self):
|
|
init_dict, inputs_dict = self.prepare_init_args_and_inputs_for_common()
|
|
|
|
torch.manual_seed(0)
|
|
model = self.model_class(**init_dict).to(torch_device)
|
|
|
|
inputs_dict.update({"return_dict": False})
|
|
|
|
torch.manual_seed(0)
|
|
output_without_slicing = model(**inputs_dict, generator=torch.manual_seed(0))[0]
|
|
|
|
torch.manual_seed(0)
|
|
model.enable_slicing()
|
|
output_with_slicing = model(**inputs_dict, generator=torch.manual_seed(0))[0]
|
|
|
|
self.assertLess(
|
|
(output_without_slicing.detach().cpu().numpy() - output_with_slicing.detach().cpu().numpy()).max(),
|
|
0.5,
|
|
"VAE slicing should not affect the inference results",
|
|
)
|
|
|
|
torch.manual_seed(0)
|
|
model.disable_slicing()
|
|
output_without_slicing_2 = model(**inputs_dict, generator=torch.manual_seed(0))[0]
|
|
|
|
self.assertEqual(
|
|
output_without_slicing.detach().cpu().numpy().all(),
|
|
output_without_slicing_2.detach().cpu().numpy().all(),
|
|
"Without slicing outputs should match with the outputs when slicing is manually disabled.",
|
|
)
|
|
|
|
def test_gradient_checkpointing_is_applied(self):
|
|
expected_set = {
|
|
"CogVideoXDownBlock3D",
|
|
"CogVideoXDecoder3D",
|
|
"CogVideoXEncoder3D",
|
|
"CogVideoXUpBlock3D",
|
|
"CogVideoXMidBlock3D",
|
|
}
|
|
super().test_gradient_checkpointing_is_applied(expected_set=expected_set)
|
|
|
|
def test_forward_with_norm_groups(self):
|
|
init_dict, inputs_dict = self.prepare_init_args_and_inputs_for_common()
|
|
|
|
init_dict["norm_num_groups"] = 16
|
|
init_dict["block_out_channels"] = (16, 32, 32, 32)
|
|
|
|
model = self.model_class(**init_dict)
|
|
model.to(torch_device)
|
|
model.eval()
|
|
|
|
with torch.no_grad():
|
|
output = model(**inputs_dict)
|
|
|
|
if isinstance(output, dict):
|
|
output = output.to_tuple()[0]
|
|
|
|
self.assertIsNotNone(output)
|
|
expected_shape = inputs_dict["sample"].shape
|
|
self.assertEqual(output.shape, expected_shape, "Input and output shapes do not match")
|
|
|
|
@unittest.skip("Unsupported test.")
|
|
def test_outputs_equivalence(self):
|
|
pass
|