mirror of
https://github.com/huggingface/diffusers.git
synced 2026-01-29 07:22:12 +03:00
173 lines
6.1 KiB
Python
173 lines
6.1 KiB
Python
# Copyright 2025 HuggingFace Inc.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
|
|
import sys
|
|
import unittest
|
|
|
|
import numpy as np
|
|
import pytest
|
|
import torch
|
|
from transformers import AutoTokenizer, GemmaForCausalLM
|
|
|
|
from diffusers import (
|
|
AutoencoderKL,
|
|
FlowMatchEulerDiscreteScheduler,
|
|
Lumina2Pipeline,
|
|
Lumina2Transformer2DModel,
|
|
)
|
|
from diffusers.utils.testing_utils import floats_tensor, is_torch_version, require_peft_backend, skip_mps, torch_device
|
|
|
|
|
|
sys.path.append(".")
|
|
|
|
from utils import PeftLoraLoaderMixinTests, check_if_lora_correctly_set # noqa: E402
|
|
|
|
|
|
@require_peft_backend
|
|
class Lumina2LoRATests(unittest.TestCase, PeftLoraLoaderMixinTests):
|
|
pipeline_class = Lumina2Pipeline
|
|
scheduler_cls = FlowMatchEulerDiscreteScheduler
|
|
scheduler_classes = [FlowMatchEulerDiscreteScheduler]
|
|
scheduler_kwargs = {}
|
|
|
|
transformer_kwargs = {
|
|
"sample_size": 4,
|
|
"patch_size": 2,
|
|
"in_channels": 4,
|
|
"hidden_size": 8,
|
|
"num_layers": 2,
|
|
"num_attention_heads": 1,
|
|
"num_kv_heads": 1,
|
|
"multiple_of": 16,
|
|
"ffn_dim_multiplier": None,
|
|
"norm_eps": 1e-5,
|
|
"scaling_factor": 1.0,
|
|
"axes_dim_rope": [4, 2, 2],
|
|
"cap_feat_dim": 8,
|
|
}
|
|
transformer_cls = Lumina2Transformer2DModel
|
|
vae_kwargs = {
|
|
"sample_size": 32,
|
|
"in_channels": 3,
|
|
"out_channels": 3,
|
|
"block_out_channels": (4,),
|
|
"layers_per_block": 1,
|
|
"latent_channels": 4,
|
|
"norm_num_groups": 1,
|
|
"use_quant_conv": False,
|
|
"use_post_quant_conv": False,
|
|
"shift_factor": 0.0609,
|
|
"scaling_factor": 1.5035,
|
|
}
|
|
vae_cls = AutoencoderKL
|
|
tokenizer_cls, tokenizer_id = AutoTokenizer, "hf-internal-testing/dummy-gemma"
|
|
text_encoder_cls, text_encoder_id = GemmaForCausalLM, "hf-internal-testing/dummy-gemma-diffusers"
|
|
|
|
@property
|
|
def output_shape(self):
|
|
return (1, 4, 4, 3)
|
|
|
|
def get_dummy_inputs(self, with_generator=True):
|
|
batch_size = 1
|
|
sequence_length = 16
|
|
num_channels = 4
|
|
sizes = (32, 32)
|
|
|
|
generator = torch.manual_seed(0)
|
|
noise = floats_tensor((batch_size, num_channels) + sizes)
|
|
input_ids = torch.randint(1, sequence_length, size=(batch_size, sequence_length), generator=generator)
|
|
|
|
pipeline_inputs = {
|
|
"prompt": "A painting of a squirrel eating a burger",
|
|
"num_inference_steps": 2,
|
|
"guidance_scale": 5.0,
|
|
"height": 32,
|
|
"width": 32,
|
|
"output_type": "np",
|
|
}
|
|
if with_generator:
|
|
pipeline_inputs.update({"generator": generator})
|
|
|
|
return noise, input_ids, pipeline_inputs
|
|
|
|
@unittest.skip("Not supported in Lumina2.")
|
|
def test_simple_inference_with_text_denoiser_block_scale(self):
|
|
pass
|
|
|
|
@unittest.skip("Not supported in Lumina2.")
|
|
def test_simple_inference_with_text_denoiser_block_scale_for_all_dict_options(self):
|
|
pass
|
|
|
|
@unittest.skip("Not supported in Lumina2.")
|
|
def test_modify_padding_mode(self):
|
|
pass
|
|
|
|
@unittest.skip("Text encoder LoRA is not supported in Lumina2.")
|
|
def test_simple_inference_with_partial_text_lora(self):
|
|
pass
|
|
|
|
@unittest.skip("Text encoder LoRA is not supported in Lumina2.")
|
|
def test_simple_inference_with_text_lora(self):
|
|
pass
|
|
|
|
@unittest.skip("Text encoder LoRA is not supported in Lumina2.")
|
|
def test_simple_inference_with_text_lora_and_scale(self):
|
|
pass
|
|
|
|
@unittest.skip("Text encoder LoRA is not supported in Lumina2.")
|
|
def test_simple_inference_with_text_lora_fused(self):
|
|
pass
|
|
|
|
@unittest.skip("Text encoder LoRA is not supported in Lumina2.")
|
|
def test_simple_inference_with_text_lora_save_load(self):
|
|
pass
|
|
|
|
@skip_mps
|
|
@pytest.mark.xfail(
|
|
condition=torch.device(torch_device).type == "cpu" and is_torch_version(">=", "2.5"),
|
|
reason="Test currently fails on CPU and PyTorch 2.5.1 but not on PyTorch 2.4.1.",
|
|
strict=False,
|
|
)
|
|
def test_lora_fuse_nan(self):
|
|
for scheduler_cls in self.scheduler_classes:
|
|
components, text_lora_config, denoiser_lora_config = self.get_dummy_components(scheduler_cls)
|
|
pipe = self.pipeline_class(**components)
|
|
pipe = pipe.to(torch_device)
|
|
pipe.set_progress_bar_config(disable=None)
|
|
_, _, inputs = self.get_dummy_inputs(with_generator=False)
|
|
|
|
if "text_encoder" in self.pipeline_class._lora_loadable_modules:
|
|
pipe.text_encoder.add_adapter(text_lora_config, "adapter-1")
|
|
self.assertTrue(
|
|
check_if_lora_correctly_set(pipe.text_encoder), "Lora not correctly set in text encoder"
|
|
)
|
|
|
|
denoiser = pipe.transformer if self.unet_kwargs is None else pipe.unet
|
|
denoiser.add_adapter(denoiser_lora_config, "adapter-1")
|
|
self.assertTrue(check_if_lora_correctly_set(denoiser), "Lora not correctly set in denoiser.")
|
|
|
|
# corrupt one LoRA weight with `inf` values
|
|
with torch.no_grad():
|
|
pipe.transformer.layers[0].attn.to_q.lora_A["adapter-1"].weight += float("inf")
|
|
|
|
# with `safe_fusing=True` we should see an Error
|
|
with self.assertRaises(ValueError):
|
|
pipe.fuse_lora(components=self.pipeline_class._lora_loadable_modules, safe_fusing=True)
|
|
|
|
# without we should not see an error, but every image will be black
|
|
pipe.fuse_lora(components=self.pipeline_class._lora_loadable_modules, safe_fusing=False)
|
|
out = pipe(**inputs)[0]
|
|
|
|
self.assertTrue(np.isnan(out).all())
|