mirror of
https://github.com/huggingface/diffusers.git
synced 2026-01-29 07:22:12 +03:00
* test permission * Add cross attention type for Sana-Sprint. * Add Sana-Sprint training script in diffusers. * make style && make quality; * modify the attention processor with `set_attn_processor` and change `SanaAttnProcessor3_0` to `SanaVanillaAttnProcessor` * Add import for SanaVanillaAttnProcessor * Add README file. * Apply suggestions from code review * style * Update examples/research_projects/sana/README.md --------- Co-authored-by: lawrence-cj <cjs1020440147@icloud.com> Co-authored-by: Sayak Paul <spsayakpaul@gmail.com>
1782 lines
70 KiB
Python
1782 lines
70 KiB
Python
#!/usr/bin/env python
|
|
# coding=utf-8
|
|
# Copyright 2025 Sana-Sprint team. All rights reserved.
|
|
# Copyright 2025 The HuggingFace Inc. team. All rights reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
|
|
import argparse
|
|
import io
|
|
import logging
|
|
import math
|
|
import os
|
|
import shutil
|
|
from pathlib import Path
|
|
from typing import Callable, Optional
|
|
|
|
import accelerate
|
|
import numpy as np
|
|
import torch
|
|
import torch.nn as nn
|
|
import torch.nn.functional as F
|
|
import torch.utils.checkpoint
|
|
import torchvision.transforms as T
|
|
import transformers
|
|
from accelerate import Accelerator
|
|
from accelerate.logging import get_logger
|
|
from accelerate.utils import DistributedDataParallelKwargs, DistributedType, ProjectConfiguration, set_seed
|
|
from datasets import load_dataset
|
|
from huggingface_hub import create_repo, upload_folder
|
|
from packaging import version
|
|
from PIL import Image
|
|
from safetensors.torch import load_file
|
|
from torch.nn.utils.spectral_norm import SpectralNorm
|
|
from torch.utils.data import DataLoader, Dataset
|
|
from tqdm.auto import tqdm
|
|
from transformers import AutoTokenizer, Gemma2Model
|
|
|
|
import diffusers
|
|
from diffusers import (
|
|
AutoencoderDC,
|
|
SanaPipeline,
|
|
SanaSprintPipeline,
|
|
SanaTransformer2DModel,
|
|
)
|
|
from diffusers.models.attention_processor import Attention
|
|
from diffusers.optimization import get_scheduler
|
|
from diffusers.training_utils import (
|
|
free_memory,
|
|
)
|
|
from diffusers.utils import (
|
|
check_min_version,
|
|
is_wandb_available,
|
|
)
|
|
from diffusers.utils.hub_utils import load_or_create_model_card, populate_model_card
|
|
from diffusers.utils.import_utils import is_torch_npu_available
|
|
from diffusers.utils.torch_utils import is_compiled_module
|
|
|
|
|
|
if is_wandb_available():
|
|
import wandb
|
|
|
|
# Will error if the minimal version of diffusers is not installed. Remove at your own risks.
|
|
check_min_version("0.33.0.dev0")
|
|
|
|
logger = get_logger(__name__)
|
|
|
|
if is_torch_npu_available():
|
|
torch.npu.config.allow_internal_format = False
|
|
|
|
COMPLEX_HUMAN_INSTRUCTION = [
|
|
"Given a user prompt, generate an 'Enhanced prompt' that provides detailed visual descriptions suitable for image generation. Evaluate the level of detail in the user prompt:",
|
|
"- If the prompt is simple, focus on adding specifics about colors, shapes, sizes, textures, and spatial relationships to create vivid and concrete scenes.",
|
|
"- If the prompt is already detailed, refine and enhance the existing details slightly without overcomplicating.",
|
|
"Here are examples of how to transform or refine prompts:",
|
|
"- User Prompt: A cat sleeping -> Enhanced: A small, fluffy white cat curled up in a round shape, sleeping peacefully on a warm sunny windowsill, surrounded by pots of blooming red flowers.",
|
|
"- User Prompt: A busy city street -> Enhanced: A bustling city street scene at dusk, featuring glowing street lamps, a diverse crowd of people in colorful clothing, and a double-decker bus passing by towering glass skyscrapers.",
|
|
"Please generate only the enhanced description for the prompt below and avoid including any additional commentary or evaluations:",
|
|
"User Prompt: ",
|
|
]
|
|
|
|
|
|
class SanaVanillaAttnProcessor:
|
|
r"""
|
|
Processor for implementing scaled dot-product attention to support JVP calculation during training.
|
|
"""
|
|
|
|
def __init__(self):
|
|
pass
|
|
|
|
@staticmethod
|
|
def scaled_dot_product_attention(
|
|
query, key, value, attn_mask=None, dropout_p=0.0, is_causal=False, scale=None
|
|
) -> torch.Tensor:
|
|
B, H, L, S = *query.size()[:-1], key.size(-2)
|
|
scale_factor = 1 / math.sqrt(query.size(-1)) if scale is None else scale
|
|
attn_bias = torch.zeros(B, H, L, S, dtype=query.dtype, device=query.device)
|
|
|
|
if attn_mask is not None:
|
|
if attn_mask.dtype == torch.bool:
|
|
attn_bias.masked_fill_(attn_mask.logical_not(), float("-inf"))
|
|
else:
|
|
attn_bias += attn_mask
|
|
attn_weight = query @ key.transpose(-2, -1) * scale_factor
|
|
attn_weight += attn_bias
|
|
attn_weight = torch.softmax(attn_weight, dim=-1)
|
|
attn_weight = torch.dropout(attn_weight, dropout_p, train=True)
|
|
return attn_weight @ value
|
|
|
|
def __call__(
|
|
self,
|
|
attn: Attention,
|
|
hidden_states: torch.Tensor,
|
|
encoder_hidden_states: Optional[torch.Tensor] = None,
|
|
attention_mask: Optional[torch.Tensor] = None,
|
|
) -> torch.Tensor:
|
|
batch_size, sequence_length, _ = (
|
|
hidden_states.shape if encoder_hidden_states is None else encoder_hidden_states.shape
|
|
)
|
|
|
|
if attention_mask is not None:
|
|
attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length, batch_size)
|
|
# scaled_dot_product_attention expects attention_mask shape to be
|
|
# (batch, heads, source_length, target_length)
|
|
attention_mask = attention_mask.view(batch_size, attn.heads, -1, attention_mask.shape[-1])
|
|
|
|
query = attn.to_q(hidden_states)
|
|
|
|
if encoder_hidden_states is None:
|
|
encoder_hidden_states = hidden_states
|
|
|
|
key = attn.to_k(encoder_hidden_states)
|
|
value = attn.to_v(encoder_hidden_states)
|
|
|
|
if attn.norm_q is not None:
|
|
query = attn.norm_q(query)
|
|
if attn.norm_k is not None:
|
|
key = attn.norm_k(key)
|
|
|
|
inner_dim = key.shape[-1]
|
|
head_dim = inner_dim // attn.heads
|
|
|
|
query = query.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
|
|
|
|
key = key.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
|
|
value = value.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
|
|
|
|
# the output of sdp = (batch, num_heads, seq_len, head_dim)
|
|
hidden_states = self.scaled_dot_product_attention(
|
|
query, key, value, attn_mask=attention_mask, dropout_p=0.0, is_causal=False
|
|
)
|
|
|
|
hidden_states = hidden_states.transpose(1, 2).reshape(batch_size, -1, attn.heads * head_dim)
|
|
hidden_states = hidden_states.to(query.dtype)
|
|
|
|
# linear proj
|
|
hidden_states = attn.to_out[0](hidden_states)
|
|
# dropout
|
|
hidden_states = attn.to_out[1](hidden_states)
|
|
|
|
hidden_states = hidden_states / attn.rescale_output_factor
|
|
|
|
return hidden_states
|
|
|
|
|
|
class Text2ImageDataset(Dataset):
|
|
"""
|
|
A PyTorch Dataset class for loading text-image pairs from a HuggingFace dataset.
|
|
This dataset is designed for text-to-image generation tasks.
|
|
Args:
|
|
hf_dataset (datasets.Dataset):
|
|
A HuggingFace dataset containing 'image' (bytes) and 'llava' (text) fields. Note that 'llava' is the field name for text descriptions in this specific dataset - you may need to adjust this key if using a different HuggingFace dataset with a different text field name.
|
|
resolution (int, optional): Target resolution for image resizing. Defaults to 1024.
|
|
Returns:
|
|
dict: A dictionary containing:
|
|
- 'text': The text description (str)
|
|
- 'image': The processed image tensor (torch.Tensor) of shape [3, resolution, resolution]
|
|
"""
|
|
|
|
def __init__(self, hf_dataset, resolution=1024):
|
|
self.dataset = hf_dataset
|
|
self.transform = T.Compose(
|
|
[
|
|
T.Lambda(lambda img: img.convert("RGB")),
|
|
T.Resize(resolution), # Image.BICUBIC
|
|
T.CenterCrop(resolution),
|
|
T.ToTensor(),
|
|
T.Normalize([0.5], [0.5]),
|
|
]
|
|
)
|
|
|
|
def __len__(self):
|
|
return len(self.dataset)
|
|
|
|
def __getitem__(self, idx):
|
|
item = self.dataset[idx]
|
|
text = item["llava"]
|
|
image_bytes = item["image"]
|
|
|
|
# Convert bytes to PIL Image
|
|
image = Image.open(io.BytesIO(image_bytes))
|
|
|
|
image_tensor = self.transform(image)
|
|
|
|
return {"text": text, "image": image_tensor}
|
|
|
|
|
|
def save_model_card(
|
|
repo_id: str,
|
|
images=None,
|
|
base_model: str = None,
|
|
validation_prompt=None,
|
|
repo_folder=None,
|
|
):
|
|
widget_dict = []
|
|
if images is not None:
|
|
for i, image in enumerate(images):
|
|
image.save(os.path.join(repo_folder, f"image_{i}.png"))
|
|
widget_dict.append(
|
|
{"text": validation_prompt if validation_prompt else " ", "output": {"url": f"image_{i}.png"}}
|
|
)
|
|
|
|
model_description = f"""
|
|
# Sana Sprint - {repo_id}
|
|
|
|
<Gallery />
|
|
|
|
## Model description
|
|
|
|
These are {repo_id} Sana Sprint weights for {base_model}.
|
|
|
|
The weights were trained using [Sana-Sprint](https://nvlabs.github.io/Sana/Sprint/).
|
|
|
|
## License
|
|
|
|
TODO
|
|
"""
|
|
model_card = load_or_create_model_card(
|
|
repo_id_or_path=repo_id,
|
|
from_training=True,
|
|
license="other",
|
|
base_model=base_model,
|
|
model_description=model_description,
|
|
widget=widget_dict,
|
|
)
|
|
tags = [
|
|
"text-to-image",
|
|
"diffusers-training",
|
|
"diffusers",
|
|
"sana-sprint",
|
|
"sana-sprint-diffusers",
|
|
]
|
|
|
|
model_card = populate_model_card(model_card, tags=tags)
|
|
model_card.save(os.path.join(repo_folder, "README.md"))
|
|
|
|
|
|
def log_validation(
|
|
pipeline,
|
|
args,
|
|
accelerator,
|
|
pipeline_args,
|
|
epoch,
|
|
is_final_validation=False,
|
|
):
|
|
logger.info(
|
|
f"Running validation... \n Generating {args.num_validation_images} images with prompt:"
|
|
f" {args.validation_prompt}."
|
|
)
|
|
if args.enable_vae_tiling:
|
|
pipeline.vae.enable_tiling(tile_sample_min_height=1024, tile_sample_stride_width=1024)
|
|
|
|
pipeline.text_encoder = pipeline.text_encoder.to(torch.bfloat16)
|
|
pipeline = pipeline.to(accelerator.device)
|
|
pipeline.set_progress_bar_config(disable=True)
|
|
|
|
# run inference
|
|
generator = torch.Generator(device=accelerator.device).manual_seed(args.seed) if args.seed is not None else None
|
|
|
|
images = [pipeline(**pipeline_args, generator=generator).images[0] for _ in range(args.num_validation_images)]
|
|
|
|
for tracker in accelerator.trackers:
|
|
phase_name = "test" if is_final_validation else "validation"
|
|
if tracker.name == "tensorboard":
|
|
np_images = np.stack([np.asarray(img) for img in images])
|
|
tracker.writer.add_images(phase_name, np_images, epoch, dataformats="NHWC")
|
|
if tracker.name == "wandb":
|
|
tracker.log(
|
|
{
|
|
phase_name: [
|
|
wandb.Image(image, caption=f"{i}: {args.validation_prompt}") for i, image in enumerate(images)
|
|
]
|
|
}
|
|
)
|
|
|
|
del pipeline
|
|
if torch.cuda.is_available():
|
|
torch.cuda.empty_cache()
|
|
|
|
return images
|
|
|
|
|
|
def parse_args(input_args=None):
|
|
parser = argparse.ArgumentParser(description="Simple example of a training script.")
|
|
parser.add_argument(
|
|
"--pretrained_model_name_or_path",
|
|
type=str,
|
|
default=None,
|
|
required=True,
|
|
help="Path to pretrained model or model identifier from huggingface.co/models.",
|
|
)
|
|
parser.add_argument(
|
|
"--revision",
|
|
type=str,
|
|
default=None,
|
|
required=False,
|
|
help="Revision of pretrained model identifier from huggingface.co/models.",
|
|
)
|
|
parser.add_argument(
|
|
"--variant",
|
|
type=str,
|
|
default=None,
|
|
help="Variant of the model files of the pretrained model identifier from huggingface.co/models, 'e.g.' fp16",
|
|
)
|
|
|
|
parser.add_argument(
|
|
"--cache_dir",
|
|
type=str,
|
|
default=None,
|
|
help="The directory where the downloaded models and datasets will be stored.",
|
|
)
|
|
|
|
parser.add_argument(
|
|
"--image_column",
|
|
type=str,
|
|
default="image",
|
|
help="The column of the dataset containing the target image. By "
|
|
"default, the standard Image Dataset maps out 'file_name' "
|
|
"to 'image'.",
|
|
)
|
|
parser.add_argument(
|
|
"--caption_column",
|
|
type=str,
|
|
default=None,
|
|
help="The column of the dataset containing the instance prompt for each image",
|
|
)
|
|
|
|
parser.add_argument("--repeats", type=int, default=1, help="How many times to repeat the training data.")
|
|
parser.add_argument(
|
|
"--max_sequence_length",
|
|
type=int,
|
|
default=300,
|
|
help="Maximum sequence length to use with with the Gemma model",
|
|
)
|
|
parser.add_argument(
|
|
"--validation_prompt",
|
|
type=str,
|
|
default=None,
|
|
help="A prompt that is used during validation to verify that the model is learning.",
|
|
)
|
|
parser.add_argument(
|
|
"--num_validation_images",
|
|
type=int,
|
|
default=4,
|
|
help="Number of images that should be generated during validation with `validation_prompt`.",
|
|
)
|
|
parser.add_argument(
|
|
"--validation_epochs",
|
|
type=int,
|
|
default=50,
|
|
help=(
|
|
"Run dreambooth validation every X epochs. Dreambooth validation consists of running the prompt"
|
|
" `args.validation_prompt` multiple times: `args.num_validation_images`."
|
|
),
|
|
)
|
|
parser.add_argument(
|
|
"--output_dir",
|
|
type=str,
|
|
default="sana-dreambooth-lora",
|
|
help="The output directory where the model predictions and checkpoints will be written.",
|
|
)
|
|
parser.add_argument("--seed", type=int, default=None, help="A seed for reproducible training.")
|
|
# ----Image Processing----
|
|
parser.add_argument("--file_path", nargs="+", required=True, help="List of parquet files (space-separated)")
|
|
parser.add_argument(
|
|
"--dataset_name",
|
|
type=str,
|
|
default=None,
|
|
help=(
|
|
"The name of the Dataset (from the HuggingFace hub) to train on (could be your own, possibly private,"
|
|
" dataset). It can also be a path pointing to a local copy of a dataset in your filesystem,"
|
|
" or to a folder containing files that 🤗 Datasets can understand."
|
|
),
|
|
)
|
|
parser.add_argument(
|
|
"--resolution",
|
|
type=int,
|
|
default=512,
|
|
help=(
|
|
"The resolution for input images, all the images in the train/validation dataset will be resized to this"
|
|
" resolution"
|
|
),
|
|
)
|
|
parser.add_argument(
|
|
"--use_fix_crop_and_size",
|
|
action="store_true",
|
|
help="Whether or not to use the fixed crop and size for the teacher model.",
|
|
default=False,
|
|
)
|
|
parser.add_argument(
|
|
"--center_crop",
|
|
default=False,
|
|
action="store_true",
|
|
help=(
|
|
"Whether to center crop the input images to the resolution. If not set, the images will be randomly"
|
|
" cropped. The images will be resized to the resolution first before cropping."
|
|
),
|
|
)
|
|
parser.add_argument(
|
|
"--random_flip",
|
|
action="store_true",
|
|
help="whether to randomly flip images horizontally",
|
|
)
|
|
parser.add_argument(
|
|
"--train_batch_size", type=int, default=4, help="Batch size (per device) for the training dataloader."
|
|
)
|
|
parser.add_argument(
|
|
"--sample_batch_size", type=int, default=4, help="Batch size (per device) for sampling images."
|
|
)
|
|
parser.add_argument("--num_train_epochs", type=int, default=1)
|
|
parser.add_argument(
|
|
"--max_train_steps",
|
|
type=int,
|
|
default=None,
|
|
help="Total number of training steps to perform. If provided, overrides num_train_epochs.",
|
|
)
|
|
parser.add_argument(
|
|
"--checkpointing_steps",
|
|
type=int,
|
|
default=500,
|
|
help=(
|
|
"Save a checkpoint of the training state every X updates. These checkpoints can be used both as final"
|
|
" checkpoints in case they are better than the last checkpoint, and are also suitable for resuming"
|
|
" training using `--resume_from_checkpoint`."
|
|
),
|
|
)
|
|
parser.add_argument(
|
|
"--checkpoints_total_limit",
|
|
type=int,
|
|
default=None,
|
|
help=("Max number of checkpoints to store."),
|
|
)
|
|
parser.add_argument(
|
|
"--resume_from_checkpoint",
|
|
type=str,
|
|
default=None,
|
|
help=(
|
|
"Whether training should be resumed from a previous checkpoint. Use a path saved by"
|
|
' `--checkpointing_steps`, or `"latest"` to automatically select the last available checkpoint.'
|
|
),
|
|
)
|
|
parser.add_argument(
|
|
"--gradient_accumulation_steps",
|
|
type=int,
|
|
default=1,
|
|
help="Number of updates steps to accumulate before performing a backward/update pass.",
|
|
)
|
|
parser.add_argument(
|
|
"--gradient_checkpointing",
|
|
action="store_true",
|
|
help="Whether or not to use gradient checkpointing to save memory at the expense of slower backward pass.",
|
|
)
|
|
parser.add_argument(
|
|
"--learning_rate",
|
|
type=float,
|
|
default=1e-4,
|
|
help="Initial learning rate (after the potential warmup period) to use.",
|
|
)
|
|
parser.add_argument(
|
|
"--scale_lr",
|
|
action="store_true",
|
|
default=False,
|
|
help="Scale the learning rate by the number of GPUs, gradient accumulation steps, and batch size.",
|
|
)
|
|
parser.add_argument(
|
|
"--lr_scheduler",
|
|
type=str,
|
|
default="constant",
|
|
help=(
|
|
'The scheduler type to use. Choose between ["linear", "cosine", "cosine_with_restarts", "polynomial",'
|
|
' "constant", "constant_with_warmup"]'
|
|
),
|
|
)
|
|
parser.add_argument(
|
|
"--lr_warmup_steps", type=int, default=500, help="Number of steps for the warmup in the lr scheduler."
|
|
)
|
|
parser.add_argument(
|
|
"--lr_num_cycles",
|
|
type=int,
|
|
default=1,
|
|
help="Number of hard resets of the lr in cosine_with_restarts scheduler.",
|
|
)
|
|
parser.add_argument("--lr_power", type=float, default=1.0, help="Power factor of the polynomial scheduler.")
|
|
parser.add_argument(
|
|
"--dataloader_num_workers",
|
|
type=int,
|
|
default=0,
|
|
help=(
|
|
"Number of subprocesses to use for data loading. 0 means that the data will be loaded in the main process."
|
|
),
|
|
)
|
|
parser.add_argument(
|
|
"--logit_mean", type=float, default=0.2, help="mean to use when using the `'logit_normal'` weighting scheme."
|
|
)
|
|
parser.add_argument(
|
|
"--logit_std", type=float, default=1.6, help="std to use when using the `'logit_normal'` weighting scheme."
|
|
)
|
|
parser.add_argument(
|
|
"--logit_mean_discriminator", type=float, default=-0.6, help="Logit mean for discriminator timestep sampling"
|
|
)
|
|
parser.add_argument(
|
|
"--logit_std_discriminator", type=float, default=1.0, help="Logit std for discriminator timestep sampling"
|
|
)
|
|
parser.add_argument("--ladd_multi_scale", action="store_true", help="Whether to use multi-scale discriminator")
|
|
parser.add_argument(
|
|
"--head_block_ids",
|
|
type=int,
|
|
nargs="+",
|
|
default=[2, 8, 14, 19],
|
|
help="Specify which transformer blocks to use for discriminator heads",
|
|
)
|
|
parser.add_argument("--adv_lambda", type=float, default=0.5, help="Weighting coefficient for adversarial loss")
|
|
parser.add_argument("--scm_lambda", type=float, default=1.0, help="Weighting coefficient for SCM loss")
|
|
parser.add_argument("--gradient_clip", type=float, default=0.1, help="Threshold for gradient clipping")
|
|
parser.add_argument(
|
|
"--sigma_data", type=float, default=0.5, help="Standard deviation of data distribution is supposed to be 0.5"
|
|
)
|
|
parser.add_argument(
|
|
"--tangent_warmup_steps", type=int, default=4000, help="Number of warmup steps for tangent vectors"
|
|
)
|
|
parser.add_argument(
|
|
"--guidance_embeds_scale", type=float, default=0.1, help="Scaling factor for guidance embeddings"
|
|
)
|
|
parser.add_argument(
|
|
"--scm_cfg_scale", type=float, nargs="+", default=[4, 4.5, 5], help="Range for classifier-free guidance scale"
|
|
)
|
|
parser.add_argument(
|
|
"--train_largest_timestep", action="store_true", help="Whether to enable special training for large timesteps"
|
|
)
|
|
parser.add_argument("--largest_timestep", type=float, default=1.57080, help="Maximum timestep value")
|
|
parser.add_argument(
|
|
"--largest_timestep_prob", type=float, default=0.5, help="Sampling probability for large timesteps"
|
|
)
|
|
parser.add_argument(
|
|
"--misaligned_pairs_D", action="store_true", help="Add misaligned sample pairs for discriminator"
|
|
)
|
|
parser.add_argument(
|
|
"--optimizer",
|
|
type=str,
|
|
default="AdamW",
|
|
help=('The optimizer type to use. Choose between ["AdamW", "prodigy"]'),
|
|
)
|
|
|
|
parser.add_argument(
|
|
"--use_8bit_adam",
|
|
action="store_true",
|
|
help="Whether or not to use 8-bit Adam from bitsandbytes. Ignored if optimizer is not set to AdamW",
|
|
)
|
|
|
|
parser.add_argument(
|
|
"--adam_beta1", type=float, default=0.9, help="The beta1 parameter for the Adam and Prodigy optimizers."
|
|
)
|
|
parser.add_argument(
|
|
"--adam_beta2", type=float, default=0.999, help="The beta2 parameter for the Adam and Prodigy optimizers."
|
|
)
|
|
parser.add_argument(
|
|
"--prodigy_beta3",
|
|
type=float,
|
|
default=None,
|
|
help="coefficients for computing the Prodigy stepsize using running averages. If set to None, "
|
|
"uses the value of square root of beta2. Ignored if optimizer is adamW",
|
|
)
|
|
parser.add_argument("--prodigy_decouple", type=bool, default=True, help="Use AdamW style decoupled weight decay")
|
|
parser.add_argument("--adam_weight_decay", type=float, default=1e-04, help="Weight decay to use for unet params")
|
|
|
|
parser.add_argument(
|
|
"--adam_epsilon",
|
|
type=float,
|
|
default=1e-08,
|
|
help="Epsilon value for the Adam optimizer and Prodigy optimizers.",
|
|
)
|
|
|
|
parser.add_argument(
|
|
"--prodigy_use_bias_correction",
|
|
type=bool,
|
|
default=True,
|
|
help="Turn on Adam's bias correction. True by default. Ignored if optimizer is adamW",
|
|
)
|
|
parser.add_argument(
|
|
"--prodigy_safeguard_warmup",
|
|
type=bool,
|
|
default=True,
|
|
help="Remove lr from the denominator of D estimate to avoid issues during warm-up stage. True by default. "
|
|
"Ignored if optimizer is adamW",
|
|
)
|
|
parser.add_argument("--max_grad_norm", default=1.0, type=float, help="Max gradient norm.")
|
|
parser.add_argument("--push_to_hub", action="store_true", help="Whether or not to push the model to the Hub.")
|
|
parser.add_argument("--hub_token", type=str, default=None, help="The token to use to push to the Model Hub.")
|
|
parser.add_argument(
|
|
"--hub_model_id",
|
|
type=str,
|
|
default=None,
|
|
help="The name of the repository to keep in sync with the local `output_dir`.",
|
|
)
|
|
parser.add_argument(
|
|
"--logging_dir",
|
|
type=str,
|
|
default="logs",
|
|
help=(
|
|
"[TensorBoard](https://www.tensorflow.org/tensorboard) log directory. Will default to"
|
|
" *output_dir/runs/**CURRENT_DATETIME_HOSTNAME***."
|
|
),
|
|
)
|
|
parser.add_argument(
|
|
"--allow_tf32",
|
|
action="store_true",
|
|
help=(
|
|
"Whether or not to allow TF32 on Ampere GPUs. Can be used to speed up training. For more information, see"
|
|
" https://pytorch.org/docs/stable/notes/cuda.html#tensorfloat-32-tf32-on-ampere-devices"
|
|
),
|
|
)
|
|
parser.add_argument(
|
|
"--cache_latents",
|
|
action="store_true",
|
|
default=False,
|
|
help="Cache the VAE latents",
|
|
)
|
|
parser.add_argument(
|
|
"--report_to",
|
|
type=str,
|
|
default="tensorboard",
|
|
help=(
|
|
'The integration to report the results and logs to. Supported platforms are `"tensorboard"`'
|
|
' (default), `"wandb"` and `"comet_ml"`. Use `"all"` to report to all integrations.'
|
|
),
|
|
)
|
|
parser.add_argument(
|
|
"--mixed_precision",
|
|
type=str,
|
|
default=None,
|
|
choices=["no", "fp16", "bf16"],
|
|
help=(
|
|
"Whether to use mixed precision. Choose between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >="
|
|
" 1.10.and an Nvidia Ampere GPU. Default to the value of accelerate config of the current system or the"
|
|
" flag passed with the `accelerate.launch` command. Use this argument to override the accelerate config."
|
|
),
|
|
)
|
|
parser.add_argument(
|
|
"--upcast_before_saving",
|
|
action="store_true",
|
|
default=False,
|
|
help=(
|
|
"Whether to upcast the trained transformer layers to float32 before saving (at the end of training). "
|
|
"Defaults to precision dtype used for training to save memory"
|
|
),
|
|
)
|
|
parser.add_argument(
|
|
"--offload",
|
|
action="store_true",
|
|
help="Whether to offload the VAE and the text encoder to CPU when they are not used.",
|
|
)
|
|
parser.add_argument("--local_rank", type=int, default=-1, help="For distributed training: local_rank")
|
|
parser.add_argument("--enable_vae_tiling", action="store_true", help="Enabla vae tiling in log validation")
|
|
parser.add_argument("--enable_npu_flash_attention", action="store_true", help="Enabla Flash Attention for NPU")
|
|
|
|
if input_args is not None:
|
|
args = parser.parse_args(input_args)
|
|
else:
|
|
args = parser.parse_args()
|
|
|
|
env_local_rank = int(os.environ.get("LOCAL_RANK", -1))
|
|
if env_local_rank != -1 and env_local_rank != args.local_rank:
|
|
args.local_rank = env_local_rank
|
|
|
|
return args
|
|
|
|
|
|
class ResidualBlock(nn.Module):
|
|
def __init__(self, fn: Callable):
|
|
super().__init__()
|
|
self.fn = fn
|
|
|
|
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
|
return (self.fn(x) + x) / np.sqrt(2)
|
|
|
|
|
|
class SpectralConv1d(nn.Conv1d):
|
|
def __init__(self, *args, **kwargs):
|
|
super().__init__(*args, **kwargs)
|
|
SpectralNorm.apply(self, name="weight", n_power_iterations=1, dim=0, eps=1e-12)
|
|
|
|
|
|
class BatchNormLocal(nn.Module):
|
|
def __init__(self, num_features: int, affine: bool = True, virtual_bs: int = 8, eps: float = 1e-5):
|
|
super().__init__()
|
|
self.virtual_bs = virtual_bs
|
|
self.eps = eps
|
|
self.affine = affine
|
|
|
|
if self.affine:
|
|
self.weight = nn.Parameter(torch.ones(num_features))
|
|
self.bias = nn.Parameter(torch.zeros(num_features))
|
|
|
|
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
|
shape = x.size()
|
|
|
|
# Reshape batch into groups.
|
|
G = np.ceil(x.size(0) / self.virtual_bs).astype(int)
|
|
x = x.view(G, -1, x.size(-2), x.size(-1))
|
|
|
|
# Calculate stats.
|
|
mean = x.mean([1, 3], keepdim=True)
|
|
var = x.var([1, 3], keepdim=True, unbiased=False)
|
|
x = (x - mean) / (torch.sqrt(var + self.eps))
|
|
|
|
if self.affine:
|
|
x = x * self.weight[None, :, None] + self.bias[None, :, None]
|
|
|
|
return x.view(shape)
|
|
|
|
|
|
def make_block(channels: int, kernel_size: int) -> nn.Module:
|
|
return nn.Sequential(
|
|
SpectralConv1d(
|
|
channels,
|
|
channels,
|
|
kernel_size=kernel_size,
|
|
padding=kernel_size // 2,
|
|
padding_mode="circular",
|
|
),
|
|
BatchNormLocal(channels),
|
|
nn.LeakyReLU(0.2, True),
|
|
)
|
|
|
|
|
|
# Adapted from https://github.com/autonomousvision/stylegan-t/blob/main/networks/discriminator.py
|
|
class DiscHead(nn.Module):
|
|
def __init__(self, channels: int, c_dim: int, cmap_dim: int = 64):
|
|
super().__init__()
|
|
self.channels = channels
|
|
self.c_dim = c_dim
|
|
self.cmap_dim = cmap_dim
|
|
|
|
self.main = nn.Sequential(
|
|
make_block(channels, kernel_size=1), ResidualBlock(make_block(channels, kernel_size=9))
|
|
)
|
|
|
|
if self.c_dim > 0:
|
|
self.cmapper = nn.Linear(self.c_dim, cmap_dim)
|
|
self.cls = SpectralConv1d(channels, cmap_dim, kernel_size=1, padding=0)
|
|
else:
|
|
self.cls = SpectralConv1d(channels, 1, kernel_size=1, padding=0)
|
|
|
|
def forward(self, x: torch.Tensor, c: torch.Tensor) -> torch.Tensor:
|
|
h = self.main(x)
|
|
out = self.cls(h)
|
|
|
|
if self.c_dim > 0:
|
|
cmap = self.cmapper(c).unsqueeze(-1)
|
|
out = (out * cmap).sum(1, keepdim=True) * (1 / np.sqrt(self.cmap_dim))
|
|
|
|
return out
|
|
|
|
|
|
class SanaMSCMDiscriminator(nn.Module):
|
|
def __init__(self, pretrained_model, is_multiscale=False, head_block_ids=None):
|
|
super().__init__()
|
|
self.transformer = pretrained_model
|
|
self.transformer.requires_grad_(False)
|
|
|
|
if head_block_ids is None or len(head_block_ids) == 0:
|
|
self.block_hooks = {2, 8, 14, 20, 27} if is_multiscale else {self.transformer.depth - 1}
|
|
else:
|
|
self.block_hooks = head_block_ids
|
|
|
|
heads = []
|
|
for i in range(len(self.block_hooks)):
|
|
heads.append(DiscHead(self.transformer.hidden_size, 0, 0))
|
|
self.heads = nn.ModuleList(heads)
|
|
|
|
def get_head_inputs(self):
|
|
return self.head_inputs
|
|
|
|
def forward(self, hidden_states, timestep, encoder_hidden_states=None, **kwargs):
|
|
feat_list = []
|
|
self.head_inputs = []
|
|
|
|
def get_features(module, input, output):
|
|
feat_list.append(output)
|
|
return output
|
|
|
|
hooks = []
|
|
for i, block in enumerate(self.transformer.transformer_blocks):
|
|
if i in self.block_hooks:
|
|
hooks.append(block.register_forward_hook(get_features))
|
|
|
|
self.transformer(
|
|
hidden_states=hidden_states,
|
|
timestep=timestep,
|
|
encoder_hidden_states=encoder_hidden_states,
|
|
return_logvar=False,
|
|
**kwargs,
|
|
)
|
|
|
|
for hook in hooks:
|
|
hook.remove()
|
|
|
|
res_list = []
|
|
for feat, head in zip(feat_list, self.heads):
|
|
B, N, C = feat.shape
|
|
feat = feat.transpose(1, 2) # [B, C, N]
|
|
self.head_inputs.append(feat)
|
|
res_list.append(head(feat, None).reshape(feat.shape[0], -1))
|
|
|
|
concat_res = torch.cat(res_list, dim=1)
|
|
|
|
return concat_res
|
|
|
|
@property
|
|
def model(self):
|
|
return self.transformer
|
|
|
|
def save_pretrained(self, path):
|
|
torch.save(self.state_dict(), path)
|
|
|
|
|
|
class DiscHeadModel:
|
|
def __init__(self, disc):
|
|
self.disc = disc
|
|
|
|
def state_dict(self):
|
|
return {name: param for name, param in self.disc.state_dict().items() if not name.startswith("transformer.")}
|
|
|
|
def __getattr__(self, name):
|
|
return getattr(self.disc, name)
|
|
|
|
|
|
class SanaTrigFlow(SanaTransformer2DModel):
|
|
def __init__(self, original_model, guidance=False):
|
|
self.__dict__ = original_model.__dict__
|
|
self.hidden_size = self.config.num_attention_heads * self.config.attention_head_dim
|
|
self.guidance = guidance
|
|
if self.guidance:
|
|
hidden_size = self.config.num_attention_heads * self.config.attention_head_dim
|
|
self.logvar_linear = torch.nn.Linear(hidden_size, 1)
|
|
torch.nn.init.xavier_uniform_(self.logvar_linear.weight)
|
|
torch.nn.init.constant_(self.logvar_linear.bias, 0)
|
|
|
|
def forward(
|
|
self, hidden_states, encoder_hidden_states, timestep, guidance=None, jvp=False, return_logvar=False, **kwargs
|
|
):
|
|
batch_size = hidden_states.shape[0]
|
|
latents = hidden_states
|
|
prompt_embeds = encoder_hidden_states
|
|
t = timestep
|
|
|
|
# TrigFlow --> Flow Transformation
|
|
timestep = t.expand(latents.shape[0]).to(prompt_embeds.dtype)
|
|
latents_model_input = latents
|
|
|
|
flow_timestep = torch.sin(timestep) / (torch.cos(timestep) + torch.sin(timestep))
|
|
|
|
flow_timestep_expanded = flow_timestep.view(-1, 1, 1, 1)
|
|
latent_model_input = latents_model_input * torch.sqrt(
|
|
flow_timestep_expanded**2 + (1 - flow_timestep_expanded) ** 2
|
|
)
|
|
latent_model_input = latent_model_input.to(prompt_embeds.dtype)
|
|
|
|
# forward in original flow
|
|
|
|
if jvp and self.gradient_checkpointing:
|
|
self.gradient_checkpointing = False
|
|
model_out = super().forward(
|
|
hidden_states=latent_model_input,
|
|
encoder_hidden_states=prompt_embeds,
|
|
timestep=flow_timestep,
|
|
guidance=guidance,
|
|
**kwargs,
|
|
)[0]
|
|
self.gradient_checkpointing = True
|
|
else:
|
|
model_out = super().forward(
|
|
hidden_states=latent_model_input,
|
|
encoder_hidden_states=prompt_embeds,
|
|
timestep=flow_timestep,
|
|
guidance=guidance,
|
|
**kwargs,
|
|
)[0]
|
|
|
|
# Flow --> TrigFlow Transformation
|
|
trigflow_model_out = (
|
|
(1 - 2 * flow_timestep_expanded) * latent_model_input
|
|
+ (1 - 2 * flow_timestep_expanded + 2 * flow_timestep_expanded**2) * model_out
|
|
) / torch.sqrt(flow_timestep_expanded**2 + (1 - flow_timestep_expanded) ** 2)
|
|
|
|
if self.guidance and guidance is not None:
|
|
timestep, embedded_timestep = self.time_embed(
|
|
timestep, guidance=guidance, hidden_dtype=hidden_states.dtype
|
|
)
|
|
else:
|
|
timestep, embedded_timestep = self.time_embed(
|
|
timestep, batch_size=batch_size, hidden_dtype=hidden_states.dtype
|
|
)
|
|
|
|
if return_logvar:
|
|
logvar = self.logvar_linear(embedded_timestep)
|
|
return trigflow_model_out, logvar
|
|
|
|
return (trigflow_model_out,)
|
|
|
|
|
|
def compute_density_for_timestep_sampling_scm(batch_size: int, logit_mean: float = None, logit_std: float = None):
|
|
"""Compute the density for sampling the timesteps when doing Sana-Sprint training."""
|
|
sigma = torch.randn(batch_size, device="cpu")
|
|
sigma = (sigma * logit_std + logit_mean).exp()
|
|
u = torch.atan(sigma / 0.5) # TODO: 0.5 should be a hyper-parameter
|
|
|
|
return u
|
|
|
|
|
|
def main(args):
|
|
if args.report_to == "wandb" and args.hub_token is not None:
|
|
raise ValueError(
|
|
"You cannot use both --report_to=wandb and --hub_token due to a security risk of exposing your token."
|
|
" Please use `huggingface-cli login` to authenticate with the Hub."
|
|
)
|
|
|
|
if torch.backends.mps.is_available() and args.mixed_precision == "bf16":
|
|
# due to pytorch#99272, MPS does not yet support bfloat16.
|
|
raise ValueError(
|
|
"Mixed precision training with bfloat16 is not supported on MPS. Please use fp16 (recommended) or fp32 instead."
|
|
)
|
|
|
|
logging_dir = Path(args.output_dir, args.logging_dir)
|
|
|
|
accelerator_project_config = ProjectConfiguration(project_dir=args.output_dir, logging_dir=logging_dir)
|
|
kwargs = DistributedDataParallelKwargs(find_unused_parameters=True)
|
|
accelerator = Accelerator(
|
|
gradient_accumulation_steps=args.gradient_accumulation_steps,
|
|
mixed_precision=args.mixed_precision,
|
|
log_with=args.report_to,
|
|
project_config=accelerator_project_config,
|
|
kwargs_handlers=[kwargs],
|
|
)
|
|
|
|
# Disable AMP for MPS.
|
|
if torch.backends.mps.is_available():
|
|
accelerator.native_amp = False
|
|
|
|
if args.report_to == "wandb":
|
|
if not is_wandb_available():
|
|
raise ImportError("Make sure to install wandb if you want to use it for logging during training.")
|
|
|
|
# Make one log on every process with the configuration for debugging.
|
|
logging.basicConfig(
|
|
format="%(asctime)s - %(levelname)s - %(name)s - %(message)s",
|
|
datefmt="%m/%d/%Y %H:%M:%S",
|
|
level=logging.INFO,
|
|
)
|
|
logger.info(accelerator.state, main_process_only=False)
|
|
if accelerator.is_local_main_process:
|
|
transformers.utils.logging.set_verbosity_warning()
|
|
diffusers.utils.logging.set_verbosity_info()
|
|
else:
|
|
transformers.utils.logging.set_verbosity_error()
|
|
diffusers.utils.logging.set_verbosity_error()
|
|
|
|
# If passed along, set the training seed now.
|
|
if args.seed is not None:
|
|
set_seed(args.seed)
|
|
|
|
# Handle the repository creation
|
|
if accelerator.is_main_process:
|
|
if args.output_dir is not None:
|
|
os.makedirs(args.output_dir, exist_ok=True)
|
|
|
|
if args.push_to_hub:
|
|
repo_id = create_repo(
|
|
repo_id=args.hub_model_id or Path(args.output_dir).name,
|
|
exist_ok=True,
|
|
).repo_id
|
|
|
|
# Load the tokenizer
|
|
tokenizer = AutoTokenizer.from_pretrained(
|
|
args.pretrained_model_name_or_path,
|
|
subfolder="tokenizer",
|
|
revision=args.revision,
|
|
)
|
|
|
|
# Load scheduler and models
|
|
text_encoder = Gemma2Model.from_pretrained(
|
|
args.pretrained_model_name_or_path, subfolder="text_encoder", revision=args.revision, variant=args.variant
|
|
)
|
|
vae = AutoencoderDC.from_pretrained(
|
|
args.pretrained_model_name_or_path,
|
|
subfolder="vae",
|
|
revision=args.revision,
|
|
variant=args.variant,
|
|
)
|
|
|
|
ori_transformer = SanaTransformer2DModel.from_pretrained(
|
|
args.pretrained_model_name_or_path,
|
|
subfolder="transformer",
|
|
revision=args.revision,
|
|
variant=args.variant,
|
|
guidance_embeds=True,
|
|
)
|
|
ori_transformer.set_attn_processor(SanaVanillaAttnProcessor())
|
|
|
|
ori_transformer_no_guide = SanaTransformer2DModel.from_pretrained(
|
|
args.pretrained_model_name_or_path,
|
|
subfolder="transformer",
|
|
revision=args.revision,
|
|
variant=args.variant,
|
|
guidance_embeds=False,
|
|
)
|
|
|
|
original_state_dict = load_file(
|
|
f"{args.pretrained_model_name_or_path}/transformer/diffusion_pytorch_model.safetensors"
|
|
)
|
|
|
|
param_mapping = {
|
|
"time_embed.emb.timestep_embedder.linear_1.weight": "time_embed.timestep_embedder.linear_1.weight",
|
|
"time_embed.emb.timestep_embedder.linear_1.bias": "time_embed.timestep_embedder.linear_1.bias",
|
|
"time_embed.emb.timestep_embedder.linear_2.weight": "time_embed.timestep_embedder.linear_2.weight",
|
|
"time_embed.emb.timestep_embedder.linear_2.bias": "time_embed.timestep_embedder.linear_2.bias",
|
|
}
|
|
|
|
for src_key, dst_key in param_mapping.items():
|
|
if src_key in original_state_dict:
|
|
ori_transformer.load_state_dict({dst_key: original_state_dict[src_key]}, strict=False, assign=True)
|
|
|
|
guidance_embedder_module = ori_transformer.time_embed.guidance_embedder
|
|
|
|
zero_state_dict = {}
|
|
|
|
target_device = accelerator.device
|
|
param_w1 = guidance_embedder_module.linear_1.weight
|
|
zero_state_dict["linear_1.weight"] = torch.zeros(param_w1.shape, device=target_device)
|
|
param_b1 = guidance_embedder_module.linear_1.bias
|
|
zero_state_dict["linear_1.bias"] = torch.zeros(param_b1.shape, device=target_device)
|
|
param_w2 = guidance_embedder_module.linear_2.weight
|
|
zero_state_dict["linear_2.weight"] = torch.zeros(param_w2.shape, device=target_device)
|
|
param_b2 = guidance_embedder_module.linear_2.bias
|
|
zero_state_dict["linear_2.bias"] = torch.zeros(param_b2.shape, device=target_device)
|
|
guidance_embedder_module.load_state_dict(zero_state_dict, strict=False, assign=True)
|
|
|
|
transformer = SanaTrigFlow(ori_transformer, guidance=True).train()
|
|
pretrained_model = SanaTrigFlow(ori_transformer_no_guide, guidance=False).eval()
|
|
|
|
disc = SanaMSCMDiscriminator(
|
|
pretrained_model,
|
|
is_multiscale=args.ladd_multi_scale,
|
|
head_block_ids=args.head_block_ids,
|
|
).train()
|
|
|
|
transformer.requires_grad_(True)
|
|
pretrained_model.requires_grad_(False)
|
|
disc.model.requires_grad_(False)
|
|
disc.heads.requires_grad_(True)
|
|
vae.requires_grad_(False)
|
|
text_encoder.requires_grad_(False)
|
|
|
|
# For mixed precision training we cast all non-trainable weights (vae, text_encoder and transformer) to half-precision
|
|
# as these weights are only used for inference, keeping weights in full precision is not required.
|
|
weight_dtype = torch.float32
|
|
if accelerator.mixed_precision == "fp16":
|
|
weight_dtype = torch.float16
|
|
elif accelerator.mixed_precision == "bf16":
|
|
weight_dtype = torch.bfloat16
|
|
|
|
if torch.backends.mps.is_available() and weight_dtype == torch.bfloat16:
|
|
# due to pytorch#99272, MPS does not yet support bfloat16.
|
|
raise ValueError(
|
|
"Mixed precision training with bfloat16 is not supported on MPS. Please use fp16 (recommended) or fp32 instead."
|
|
)
|
|
|
|
# VAE should always be kept in fp32 for SANA (?)
|
|
vae.to(accelerator.device, dtype=torch.float32)
|
|
transformer.to(accelerator.device, dtype=weight_dtype)
|
|
pretrained_model.to(accelerator.device, dtype=weight_dtype)
|
|
disc.to(accelerator.device, dtype=weight_dtype)
|
|
# because Gemma2 is particularly suited for bfloat16.
|
|
text_encoder.to(dtype=torch.bfloat16)
|
|
|
|
if args.enable_npu_flash_attention:
|
|
if is_torch_npu_available():
|
|
logger.info("npu flash attention enabled.")
|
|
for block in transformer.transformer_blocks:
|
|
block.attn2.set_use_npu_flash_attention(True)
|
|
for block in pretrained_model.transformer_blocks:
|
|
block.attn2.set_use_npu_flash_attention(True)
|
|
else:
|
|
raise ValueError("npu flash attention requires torch_npu extensions and is supported only on npu device ")
|
|
|
|
# Initialize a text encoding pipeline and keep it to CPU for now.
|
|
text_encoding_pipeline = SanaPipeline.from_pretrained(
|
|
args.pretrained_model_name_or_path,
|
|
vae=None,
|
|
transformer=None,
|
|
text_encoder=text_encoder,
|
|
tokenizer=tokenizer,
|
|
torch_dtype=torch.bfloat16,
|
|
)
|
|
text_encoding_pipeline = text_encoding_pipeline.to(accelerator.device)
|
|
|
|
if args.gradient_checkpointing:
|
|
transformer.enable_gradient_checkpointing()
|
|
|
|
def unwrap_model(model):
|
|
model = accelerator.unwrap_model(model)
|
|
model = model._orig_mod if is_compiled_module(model) else model
|
|
return model
|
|
|
|
if version.parse(accelerate.__version__) >= version.parse("0.16.0"):
|
|
|
|
def save_model_hook(models, weights, output_dir):
|
|
if accelerator.is_main_process:
|
|
for model in models:
|
|
unwrapped_model = unwrap_model(model)
|
|
# Handle transformer model
|
|
if isinstance(unwrapped_model, type(unwrap_model(transformer))):
|
|
model = unwrapped_model
|
|
model.save_pretrained(os.path.join(output_dir, "transformer"))
|
|
# Handle discriminator model (only save heads)
|
|
elif isinstance(unwrapped_model, type(unwrap_model(disc))):
|
|
# Save only the heads
|
|
torch.save(unwrapped_model.heads.state_dict(), os.path.join(output_dir, "disc_heads.pt"))
|
|
else:
|
|
raise ValueError(f"unexpected save model: {unwrapped_model.__class__}")
|
|
|
|
# make sure to pop weight so that corresponding model is not saved again
|
|
if weights:
|
|
weights.pop()
|
|
|
|
def load_model_hook(models, input_dir):
|
|
transformer_ = None
|
|
disc_ = None
|
|
|
|
if not accelerator.distributed_type == DistributedType.DEEPSPEED:
|
|
while len(models) > 0:
|
|
model = models.pop()
|
|
unwrapped_model = unwrap_model(model)
|
|
|
|
if isinstance(unwrapped_model, type(unwrap_model(transformer))):
|
|
transformer_ = model # noqa: F841
|
|
elif isinstance(unwrapped_model, type(unwrap_model(disc))):
|
|
# Load only the heads
|
|
heads_state_dict = torch.load(os.path.join(input_dir, "disc_heads.pt"))
|
|
unwrapped_model.heads.load_state_dict(heads_state_dict)
|
|
disc_ = model # noqa: F841
|
|
else:
|
|
raise ValueError(f"unexpected save model: {unwrapped_model.__class__}")
|
|
|
|
else:
|
|
# DeepSpeed case
|
|
transformer_ = SanaTransformer2DModel.from_pretrained(input_dir, subfolder="transformer") # noqa: F841
|
|
disc_heads_state_dict = torch.load(os.path.join(input_dir, "disc_heads.pt")) # noqa: F841
|
|
# You'll need to handle how to load the heads in DeepSpeed case
|
|
|
|
accelerator.register_save_state_pre_hook(save_model_hook)
|
|
accelerator.register_load_state_pre_hook(load_model_hook)
|
|
|
|
# Enable TF32 for faster training on Ampere GPUs,
|
|
# cf https://pytorch.org/docs/stable/notes/cuda.html#tensorfloat-32-tf32-on-ampere-devices
|
|
if args.allow_tf32 and torch.cuda.is_available():
|
|
torch.backends.cuda.matmul.allow_tf32 = True
|
|
|
|
if args.scale_lr:
|
|
args.learning_rate = (
|
|
args.learning_rate * args.gradient_accumulation_steps * args.train_batch_size * accelerator.num_processes
|
|
)
|
|
|
|
# Use 8-bit Adam for lower memory usage or to fine-tune the model in 16GB GPUs
|
|
if args.use_8bit_adam:
|
|
try:
|
|
import bitsandbytes as bnb
|
|
except ImportError:
|
|
raise ImportError(
|
|
"To use 8-bit Adam, please install the bitsandbytes library: `pip install bitsandbytes`."
|
|
)
|
|
|
|
optimizer_class = bnb.optim.AdamW8bit
|
|
else:
|
|
optimizer_class = torch.optim.AdamW
|
|
|
|
# Optimization parameters
|
|
optimizer_G = optimizer_class(
|
|
transformer.parameters(),
|
|
lr=args.learning_rate,
|
|
betas=(args.adam_beta1, args.adam_beta2),
|
|
weight_decay=args.adam_weight_decay,
|
|
eps=args.adam_epsilon,
|
|
)
|
|
|
|
optimizer_D = optimizer_class(
|
|
disc.heads.parameters(),
|
|
lr=args.learning_rate,
|
|
betas=(args.adam_beta1, args.adam_beta2),
|
|
weight_decay=args.adam_weight_decay,
|
|
eps=args.adam_epsilon,
|
|
)
|
|
|
|
hf_dataset = load_dataset(
|
|
args.dataset_name,
|
|
data_files=args.file_path,
|
|
split="train",
|
|
)
|
|
|
|
train_dataset = Text2ImageDataset(
|
|
hf_dataset=hf_dataset,
|
|
resolution=args.resolution,
|
|
)
|
|
|
|
train_dataloader = DataLoader(
|
|
train_dataset,
|
|
batch_size=args.train_batch_size,
|
|
num_workers=args.dataloader_num_workers,
|
|
pin_memory=True,
|
|
persistent_workers=True,
|
|
shuffle=True,
|
|
)
|
|
|
|
# Scheduler and math around the number of training steps.
|
|
overrode_max_train_steps = False
|
|
num_update_steps_per_epoch = math.ceil(len(train_dataloader) / args.gradient_accumulation_steps)
|
|
if args.max_train_steps is None:
|
|
args.max_train_steps = args.num_train_epochs * num_update_steps_per_epoch
|
|
overrode_max_train_steps = True
|
|
|
|
lr_scheduler = get_scheduler(
|
|
args.lr_scheduler,
|
|
optimizer=optimizer_G,
|
|
num_warmup_steps=args.lr_warmup_steps * accelerator.num_processes,
|
|
num_training_steps=args.max_train_steps * accelerator.num_processes,
|
|
num_cycles=args.lr_num_cycles,
|
|
power=args.lr_power,
|
|
)
|
|
|
|
# Prepare everything with our `accelerator`.
|
|
transformer, pretrained_model, disc, optimizer_G, optimizer_D, train_dataloader, lr_scheduler = (
|
|
accelerator.prepare(
|
|
transformer, pretrained_model, disc, optimizer_G, optimizer_D, train_dataloader, lr_scheduler
|
|
)
|
|
)
|
|
|
|
# We need to recalculate our total training steps as the size of the training dataloader may have changed.
|
|
num_update_steps_per_epoch = math.ceil(len(train_dataloader) / args.gradient_accumulation_steps)
|
|
if overrode_max_train_steps:
|
|
args.max_train_steps = args.num_train_epochs * num_update_steps_per_epoch
|
|
# Afterwards we recalculate our number of training epochs
|
|
args.num_train_epochs = math.ceil(args.max_train_steps / num_update_steps_per_epoch)
|
|
|
|
# We need to initialize the trackers we use, and also store our configuration.
|
|
# The trackers initializes automatically on the main process.
|
|
if accelerator.is_main_process:
|
|
tracker_name = "sana-sprint"
|
|
config = {
|
|
k: str(v) if not isinstance(v, (int, float, str, bool, torch.Tensor)) else v for k, v in vars(args).items()
|
|
}
|
|
accelerator.init_trackers(tracker_name, config=config)
|
|
|
|
# Train!
|
|
total_batch_size = args.train_batch_size * accelerator.num_processes * args.gradient_accumulation_steps
|
|
|
|
logger.info("***** Running training *****")
|
|
logger.info(f" Num examples = {len(train_dataset)}")
|
|
logger.info(f" Num batches each epoch = {len(train_dataloader)}")
|
|
logger.info(f" Num Epochs = {args.num_train_epochs}")
|
|
logger.info(f" Instantaneous batch size per device = {args.train_batch_size}")
|
|
logger.info(f" Total train batch size (w. parallel, distributed & accumulation) = {total_batch_size}")
|
|
logger.info(f" Gradient Accumulation steps = {args.gradient_accumulation_steps}")
|
|
logger.info(f" Total optimization steps = {args.max_train_steps}")
|
|
global_step = 0
|
|
first_epoch = 0
|
|
|
|
# Potentially load in the weights and states from a previous save
|
|
if args.resume_from_checkpoint:
|
|
if args.resume_from_checkpoint != "latest":
|
|
path = os.path.basename(args.resume_from_checkpoint)
|
|
else:
|
|
# Get the mos recent checkpoint
|
|
dirs = os.listdir(args.output_dir)
|
|
dirs = [d for d in dirs if d.startswith("checkpoint")]
|
|
dirs = sorted(dirs, key=lambda x: int(x.split("-")[1]))
|
|
path = dirs[-1] if len(dirs) > 0 else None
|
|
|
|
if path is None:
|
|
accelerator.print(
|
|
f"Checkpoint '{args.resume_from_checkpoint}' does not exist. Starting a new training run."
|
|
)
|
|
args.resume_from_checkpoint = None
|
|
initial_global_step = 0
|
|
else:
|
|
accelerator.print(f"Resuming from checkpoint {path}")
|
|
accelerator.load_state(os.path.join(args.output_dir, path))
|
|
global_step = int(path.split("-")[1])
|
|
|
|
initial_global_step = global_step
|
|
first_epoch = global_step // num_update_steps_per_epoch
|
|
|
|
else:
|
|
initial_global_step = 0
|
|
|
|
progress_bar = tqdm(
|
|
range(0, args.max_train_steps),
|
|
initial=initial_global_step,
|
|
desc="Steps",
|
|
# Only show the progress bar once on each machine.
|
|
disable=not accelerator.is_local_main_process,
|
|
)
|
|
|
|
phase = "G"
|
|
vae_config_scaling_factor = vae.config.scaling_factor
|
|
sigma_data = args.sigma_data
|
|
negative_prompt = [""] * args.train_batch_size
|
|
negative_prompt_embeds, negative_prompt_attention_mask, _, _ = text_encoding_pipeline.encode_prompt(
|
|
prompt=negative_prompt,
|
|
complex_human_instruction=False,
|
|
do_classifier_free_guidance=False,
|
|
)
|
|
|
|
for epoch in range(first_epoch, args.num_train_epochs):
|
|
transformer.train()
|
|
disc.train()
|
|
|
|
for step, batch in enumerate(train_dataloader):
|
|
# text encoding
|
|
prompts = batch["text"]
|
|
with torch.no_grad():
|
|
prompt_embeds, prompt_attention_mask, _, _ = text_encoding_pipeline.encode_prompt(
|
|
prompts, complex_human_instruction=COMPLEX_HUMAN_INSTRUCTION, do_classifier_free_guidance=False
|
|
)
|
|
|
|
# Convert images to latent space
|
|
vae = vae.to(accelerator.device)
|
|
pixel_values = batch["image"].to(dtype=vae.dtype)
|
|
model_input = vae.encode(pixel_values).latent
|
|
model_input = model_input * vae_config_scaling_factor * sigma_data
|
|
model_input = model_input.to(dtype=weight_dtype)
|
|
|
|
# Sample noise that we'll add to the latents
|
|
noise = torch.randn_like(model_input) * sigma_data
|
|
bsz = model_input.shape[0]
|
|
|
|
# Sample a random timestep for each image
|
|
# for weighting schemes where we sample timesteps non-uniformly
|
|
u = compute_density_for_timestep_sampling_scm(
|
|
batch_size=bsz,
|
|
logit_mean=args.logit_mean,
|
|
logit_std=args.logit_std,
|
|
).to(accelerator.device)
|
|
|
|
# Add noise according to TrigFlow.
|
|
# zt = cos(t) * x + sin(t) * noise
|
|
t = u.view(-1, 1, 1, 1)
|
|
noisy_model_input = torch.cos(t) * model_input + torch.sin(t) * noise
|
|
|
|
scm_cfg_scale = torch.tensor(
|
|
np.random.choice(args.scm_cfg_scale, size=bsz, replace=True),
|
|
device=accelerator.device,
|
|
)
|
|
|
|
def model_wrapper(scaled_x_t, t):
|
|
pred, logvar = accelerator.unwrap_model(transformer)(
|
|
hidden_states=scaled_x_t,
|
|
timestep=t.flatten(),
|
|
encoder_hidden_states=prompt_embeds,
|
|
encoder_attention_mask=prompt_attention_mask,
|
|
guidance=(scm_cfg_scale.flatten() * args.guidance_embeds_scale),
|
|
jvp=True,
|
|
return_logvar=True,
|
|
)
|
|
return pred, logvar
|
|
|
|
if phase == "G":
|
|
transformer.train()
|
|
disc.eval()
|
|
models_to_accumulate = [transformer]
|
|
with accelerator.accumulate(models_to_accumulate):
|
|
with torch.no_grad():
|
|
cfg_x_t = torch.cat([noisy_model_input, noisy_model_input], dim=0)
|
|
cfg_t = torch.cat([t, t], dim=0)
|
|
cfg_y = torch.cat([negative_prompt_embeds, prompt_embeds], dim=0)
|
|
cfg_y_mask = torch.cat([negative_prompt_attention_mask, prompt_attention_mask], dim=0)
|
|
|
|
cfg_pretrain_pred = pretrained_model(
|
|
hidden_states=(cfg_x_t / sigma_data),
|
|
timestep=cfg_t.flatten(),
|
|
encoder_hidden_states=cfg_y,
|
|
encoder_attention_mask=cfg_y_mask,
|
|
)[0]
|
|
|
|
cfg_dxt_dt = sigma_data * cfg_pretrain_pred
|
|
|
|
dxt_dt_uncond, dxt_dt = cfg_dxt_dt.chunk(2)
|
|
|
|
scm_cfg_scale = scm_cfg_scale.view(-1, 1, 1, 1)
|
|
dxt_dt = dxt_dt_uncond + scm_cfg_scale * (dxt_dt - dxt_dt_uncond)
|
|
|
|
v_x = torch.cos(t) * torch.sin(t) * dxt_dt / sigma_data
|
|
v_t = torch.cos(t) * torch.sin(t)
|
|
|
|
# Adapt from https://github.com/xandergos/sCM-mnist/blob/master/train_consistency.py
|
|
with torch.no_grad():
|
|
F_theta, F_theta_grad, logvar = torch.func.jvp(
|
|
model_wrapper, (noisy_model_input / sigma_data, t), (v_x, v_t), has_aux=True
|
|
)
|
|
|
|
F_theta, logvar = transformer(
|
|
hidden_states=(noisy_model_input / sigma_data),
|
|
timestep=t.flatten(),
|
|
encoder_hidden_states=prompt_embeds,
|
|
encoder_attention_mask=prompt_attention_mask,
|
|
guidance=(scm_cfg_scale.flatten() * args.guidance_embeds_scale),
|
|
return_logvar=True,
|
|
)
|
|
|
|
logvar = logvar.view(-1, 1, 1, 1)
|
|
F_theta_grad = F_theta_grad.detach()
|
|
F_theta_minus = F_theta.detach()
|
|
|
|
# Warmup steps
|
|
r = min(1, global_step / args.tangent_warmup_steps)
|
|
|
|
# Calculate gradient g using JVP rearrangement
|
|
g = -torch.cos(t) * torch.cos(t) * (sigma_data * F_theta_minus - dxt_dt)
|
|
second_term = -r * (torch.cos(t) * torch.sin(t) * noisy_model_input + sigma_data * F_theta_grad)
|
|
g = g + second_term
|
|
|
|
# Tangent normalization
|
|
g_norm = torch.linalg.vector_norm(g, dim=(1, 2, 3), keepdim=True)
|
|
g = g / (g_norm + 0.1) # 0.1 is the constant c, can be modified but 0.1 was used in the paper
|
|
|
|
sigma = torch.tan(t) * sigma_data
|
|
weight = 1 / sigma
|
|
|
|
l2_loss = torch.square(F_theta - F_theta_minus - g)
|
|
|
|
# Calculate loss with normalization factor
|
|
loss = (weight / torch.exp(logvar)) * l2_loss + logvar
|
|
|
|
loss = loss.mean()
|
|
|
|
loss_no_logvar = weight * torch.square(F_theta - F_theta_minus - g)
|
|
loss_no_logvar = loss_no_logvar.mean()
|
|
g_norm = g_norm.mean()
|
|
|
|
pred_x_0 = torch.cos(t) * noisy_model_input - torch.sin(t) * F_theta * sigma_data
|
|
|
|
if args.train_largest_timestep:
|
|
pred_x_0.detach()
|
|
u = compute_density_for_timestep_sampling_scm(
|
|
batch_size=bsz,
|
|
logit_mean=args.logit_mean,
|
|
logit_std=args.logit_std,
|
|
).to(accelerator.device)
|
|
t_new = u.view(-1, 1, 1, 1)
|
|
|
|
random_mask = torch.rand_like(t_new) < args.largest_timestep_prob
|
|
|
|
t_new = torch.where(random_mask, torch.full_like(t_new, args.largest_timestep), t_new)
|
|
z_new = torch.randn_like(model_input) * sigma_data
|
|
x_t_new = torch.cos(t_new) * model_input + torch.sin(t_new) * z_new
|
|
|
|
F_theta = transformer(
|
|
hidden_states=(x_t_new / sigma_data),
|
|
timestep=t_new.flatten(),
|
|
encoder_hidden_states=prompt_embeds,
|
|
encoder_attention_mask=prompt_attention_mask,
|
|
guidance=(scm_cfg_scale.flatten() * args.guidance_embeds_scale),
|
|
return_logvar=False,
|
|
jvp=False,
|
|
)[0]
|
|
|
|
pred_x_0 = torch.cos(t_new) * x_t_new - torch.sin(t_new) * F_theta * sigma_data
|
|
|
|
# Sample timesteps for discriminator
|
|
timesteps_D = compute_density_for_timestep_sampling_scm(
|
|
batch_size=bsz,
|
|
logit_mean=args.logit_mean_discriminator,
|
|
logit_std=args.logit_std_discriminator,
|
|
).to(accelerator.device)
|
|
t_D = timesteps_D.view(-1, 1, 1, 1)
|
|
|
|
# Add noise to predicted x0
|
|
z_D = torch.randn_like(model_input) * sigma_data
|
|
noised_predicted_x0 = torch.cos(t_D) * pred_x_0 + torch.sin(t_D) * z_D
|
|
|
|
# Calculate adversarial loss
|
|
pred_fake = disc(
|
|
hidden_states=(noised_predicted_x0 / sigma_data),
|
|
timestep=t_D.flatten(),
|
|
encoder_hidden_states=prompt_embeds,
|
|
encoder_attention_mask=prompt_attention_mask,
|
|
)
|
|
adv_loss = -torch.mean(pred_fake)
|
|
|
|
# Total loss = sCM loss + LADD loss
|
|
|
|
total_loss = args.scm_lambda * loss + adv_loss * args.adv_lambda
|
|
|
|
total_loss = total_loss / args.gradient_accumulation_steps
|
|
|
|
accelerator.backward(total_loss)
|
|
|
|
if accelerator.sync_gradients:
|
|
grad_norm = accelerator.clip_grad_norm_(transformer.parameters(), args.gradient_clip)
|
|
if torch.logical_or(grad_norm.isnan(), grad_norm.isinf()):
|
|
optimizer_G.zero_grad(set_to_none=True)
|
|
optimizer_D.zero_grad(set_to_none=True)
|
|
logger.warning("NaN or Inf detected in grad_norm, skipping iteration...")
|
|
continue
|
|
|
|
# switch phase to D
|
|
phase = "D"
|
|
|
|
optimizer_G.step()
|
|
lr_scheduler.step()
|
|
optimizer_G.zero_grad(set_to_none=True)
|
|
|
|
elif phase == "D":
|
|
transformer.eval()
|
|
disc.train()
|
|
models_to_accumulate = [disc]
|
|
with accelerator.accumulate(models_to_accumulate):
|
|
with torch.no_grad():
|
|
scm_cfg_scale = torch.tensor(
|
|
np.random.choice(args.scm_cfg_scale, size=bsz, replace=True),
|
|
device=accelerator.device,
|
|
)
|
|
|
|
if args.train_largest_timestep:
|
|
random_mask = torch.rand_like(t) < args.largest_timestep_prob
|
|
t = torch.where(random_mask, torch.full_like(t, args.largest_timestep_prob), t)
|
|
|
|
z_new = torch.randn_like(model_input) * sigma_data
|
|
noisy_model_input = torch.cos(t) * model_input + torch.sin(t) * z_new
|
|
# here
|
|
F_theta = transformer(
|
|
hidden_states=(noisy_model_input / sigma_data),
|
|
timestep=t.flatten(),
|
|
encoder_hidden_states=prompt_embeds,
|
|
encoder_attention_mask=prompt_attention_mask,
|
|
guidance=(scm_cfg_scale.flatten() * args.guidance_embeds_scale),
|
|
return_logvar=False,
|
|
jvp=False,
|
|
)[0]
|
|
pred_x_0 = torch.cos(t) * noisy_model_input - torch.sin(t) * F_theta * sigma_data
|
|
|
|
# Sample timesteps for fake and real samples
|
|
timestep_D_fake = compute_density_for_timestep_sampling_scm(
|
|
batch_size=bsz,
|
|
logit_mean=args.logit_mean_discriminator,
|
|
logit_std=args.logit_std_discriminator,
|
|
).to(accelerator.device)
|
|
timesteps_D_real = timestep_D_fake
|
|
|
|
t_D_fake = timestep_D_fake.view(-1, 1, 1, 1)
|
|
t_D_real = timesteps_D_real.view(-1, 1, 1, 1)
|
|
|
|
# Add noise to predicted x0 and real x0
|
|
z_D_fake = torch.randn_like(model_input) * sigma_data
|
|
z_D_real = torch.randn_like(model_input) * sigma_data
|
|
noised_predicted_x0 = torch.cos(t_D_fake) * pred_x_0 + torch.sin(t_D_fake) * z_D_fake
|
|
noised_latents = torch.cos(t_D_real) * model_input + torch.sin(t_D_real) * z_D_real
|
|
|
|
# Add misaligned pairs if enabled and batch size > 1
|
|
if args.misaligned_pairs_D and bsz > 1:
|
|
# Create shifted pairs
|
|
shifted_x0 = torch.roll(model_input, 1, 0)
|
|
timesteps_D_shifted = compute_density_for_timestep_sampling_scm(
|
|
batch_size=bsz,
|
|
logit_mean=args.logit_mean_discriminator,
|
|
logit_std=args.logit_std_discriminator,
|
|
).to(accelerator.device)
|
|
t_D_shifted = timesteps_D_shifted.view(-1, 1, 1, 1)
|
|
|
|
# Add noise to shifted pairs
|
|
z_D_shifted = torch.randn_like(shifted_x0) * sigma_data
|
|
noised_shifted_x0 = torch.cos(t_D_shifted) * shifted_x0 + torch.sin(t_D_shifted) * z_D_shifted
|
|
|
|
# Concatenate with original noised samples
|
|
noised_predicted_x0 = torch.cat([noised_predicted_x0, noised_shifted_x0], dim=0)
|
|
t_D_fake = torch.cat([t_D_fake, t_D_shifted], dim=0)
|
|
prompt_embeds = torch.cat([prompt_embeds, prompt_embeds], dim=0)
|
|
prompt_attention_mask = torch.cat([prompt_attention_mask, prompt_attention_mask], dim=0)
|
|
|
|
# Calculate D loss
|
|
|
|
pred_fake = disc(
|
|
hidden_states=(noised_predicted_x0 / sigma_data),
|
|
timestep=t_D_fake.flatten(),
|
|
encoder_hidden_states=prompt_embeds,
|
|
encoder_attention_mask=prompt_attention_mask,
|
|
)
|
|
pred_true = disc(
|
|
hidden_states=(noised_latents / sigma_data),
|
|
timestep=t_D_real.flatten(),
|
|
encoder_hidden_states=prompt_embeds,
|
|
encoder_attention_mask=prompt_attention_mask,
|
|
)
|
|
|
|
# hinge loss
|
|
loss_real = torch.mean(F.relu(1.0 - pred_true))
|
|
loss_gen = torch.mean(F.relu(1.0 + pred_fake))
|
|
loss_D = 0.5 * (loss_real + loss_gen)
|
|
|
|
loss_D = loss_D / args.gradient_accumulation_steps
|
|
|
|
accelerator.backward(loss_D)
|
|
|
|
if accelerator.sync_gradients:
|
|
grad_norm = accelerator.clip_grad_norm_(disc.parameters(), args.gradient_clip)
|
|
if torch.logical_or(grad_norm.isnan(), grad_norm.isinf()):
|
|
optimizer_G.zero_grad(set_to_none=True)
|
|
optimizer_D.zero_grad(set_to_none=True)
|
|
logger.warning("NaN or Inf detected in grad_norm, skipping iteration...")
|
|
continue
|
|
|
|
# switch back to phase G and add global step by one.
|
|
phase = "G"
|
|
|
|
optimizer_D.step()
|
|
optimizer_D.zero_grad(set_to_none=True)
|
|
|
|
# Checks if the accelerator has performed an optimization step behind the scenes
|
|
if accelerator.sync_gradients:
|
|
progress_bar.update(1)
|
|
global_step += 1
|
|
|
|
if accelerator.is_main_process:
|
|
if global_step % args.checkpointing_steps == 0:
|
|
# _before_ saving state, check if this save would set us over the `checkpoints_total_limit`
|
|
if args.checkpoints_total_limit is not None:
|
|
checkpoints = os.listdir(args.output_dir)
|
|
checkpoints = [d for d in checkpoints if d.startswith("checkpoint")]
|
|
checkpoints = sorted(checkpoints, key=lambda x: int(x.split("-")[1]))
|
|
|
|
# before we save the new checkpoint, we need to have at _most_ `checkpoints_total_limit - 1` checkpoints
|
|
if len(checkpoints) >= args.checkpoints_total_limit:
|
|
num_to_remove = len(checkpoints) - args.checkpoints_total_limit + 1
|
|
removing_checkpoints = checkpoints[0:num_to_remove]
|
|
|
|
logger.info(
|
|
f"{len(checkpoints)} checkpoints already exist, removing {len(removing_checkpoints)} checkpoints"
|
|
)
|
|
logger.info(f"removing checkpoints: {', '.join(removing_checkpoints)}")
|
|
|
|
for removing_checkpoint in removing_checkpoints:
|
|
removing_checkpoint = os.path.join(args.output_dir, removing_checkpoint)
|
|
shutil.rmtree(removing_checkpoint)
|
|
|
|
save_path = os.path.join(args.output_dir, f"checkpoint-{global_step}")
|
|
accelerator.save_state(save_path)
|
|
logger.info(f"Saved state to {save_path}")
|
|
|
|
logs = {
|
|
"scm_loss": loss.detach().item(),
|
|
"adv_loss": adv_loss.detach().item(),
|
|
"lr": lr_scheduler.get_last_lr()[0],
|
|
}
|
|
progress_bar.set_postfix(**logs)
|
|
accelerator.log(logs, step=global_step)
|
|
|
|
if global_step >= args.max_train_steps:
|
|
break
|
|
|
|
if accelerator.is_main_process:
|
|
if args.validation_prompt is not None and epoch % args.validation_epochs == 0:
|
|
# create pipeline
|
|
pipeline = SanaSprintPipeline.from_pretrained(
|
|
args.pretrained_model_name_or_path,
|
|
transformer=accelerator.unwrap_model(transformer),
|
|
revision=args.revision,
|
|
variant=args.variant,
|
|
torch_dtype=torch.float32,
|
|
)
|
|
pipeline_args = {
|
|
"prompt": args.validation_prompt,
|
|
"complex_human_instruction": COMPLEX_HUMAN_INSTRUCTION,
|
|
}
|
|
images = log_validation(
|
|
pipeline=pipeline,
|
|
args=args,
|
|
accelerator=accelerator,
|
|
pipeline_args=pipeline_args,
|
|
epoch=epoch,
|
|
)
|
|
free_memory()
|
|
|
|
images = None
|
|
del pipeline
|
|
|
|
accelerator.wait_for_everyone()
|
|
if accelerator.is_main_process:
|
|
transformer = unwrap_model(transformer)
|
|
if args.upcast_before_saving:
|
|
transformer.to(torch.float32)
|
|
else:
|
|
transformer = transformer.to(weight_dtype)
|
|
|
|
# Save discriminator heads
|
|
disc = unwrap_model(disc)
|
|
disc_heads_state_dict = disc.heads.state_dict()
|
|
|
|
# Save transformer model
|
|
transformer.save_pretrained(os.path.join(args.output_dir, "transformer"))
|
|
|
|
# Save discriminator heads
|
|
torch.save(disc_heads_state_dict, os.path.join(args.output_dir, "disc_heads.pt"))
|
|
|
|
# Final inference
|
|
# Load previous pipeline
|
|
pipeline = SanaSprintPipeline.from_pretrained(
|
|
args.pretrained_model_name_or_path,
|
|
transformer=accelerator.unwrap_model(transformer),
|
|
revision=args.revision,
|
|
variant=args.variant,
|
|
torch_dtype=torch.float32,
|
|
)
|
|
|
|
# run inference
|
|
images = []
|
|
if args.validation_prompt and args.num_validation_images > 0:
|
|
pipeline_args = {
|
|
"prompt": args.validation_prompt,
|
|
"complex_human_instruction": COMPLEX_HUMAN_INSTRUCTION,
|
|
}
|
|
images = log_validation(
|
|
pipeline=pipeline,
|
|
args=args,
|
|
accelerator=accelerator,
|
|
pipeline_args=pipeline_args,
|
|
epoch=epoch,
|
|
is_final_validation=True,
|
|
)
|
|
|
|
if args.push_to_hub:
|
|
save_model_card(
|
|
repo_id,
|
|
images=images,
|
|
base_model=args.pretrained_model_name_or_path,
|
|
instance_prompt=args.instance_prompt,
|
|
validation_prompt=args.validation_prompt,
|
|
repo_folder=args.output_dir,
|
|
)
|
|
upload_folder(
|
|
repo_id=repo_id,
|
|
folder_path=args.output_dir,
|
|
commit_message="End of training",
|
|
ignore_patterns=["step_*", "epoch_*"],
|
|
)
|
|
|
|
images = None
|
|
del pipeline
|
|
|
|
accelerator.end_training()
|
|
|
|
|
|
if __name__ == "__main__":
|
|
args = parse_args()
|
|
main(args)
|