mirror of
https://github.com/huggingface/diffusers.git
synced 2026-01-27 17:22:53 +03:00
908 lines
42 KiB
Python
908 lines
42 KiB
Python
# Inspired by: https://github.com/haofanwang/ControlNet-for-Diffusers/
|
|
|
|
import inspect
|
|
from typing import Any, Callable, Dict, List, Optional, Tuple, Union
|
|
|
|
import numpy as np
|
|
import PIL.Image
|
|
import torch
|
|
from transformers import CLIPImageProcessor, CLIPTextModel, CLIPTokenizer
|
|
|
|
from diffusers import AutoencoderKL, ControlNetModel, UNet2DConditionModel, logging
|
|
from diffusers.pipelines.controlnet.multicontrolnet import MultiControlNetModel
|
|
from diffusers.pipelines.pipeline_utils import DiffusionPipeline, StableDiffusionMixin
|
|
from diffusers.pipelines.stable_diffusion import StableDiffusionPipelineOutput, StableDiffusionSafetyChecker
|
|
from diffusers.schedulers import KarrasDiffusionSchedulers
|
|
from diffusers.utils import (
|
|
PIL_INTERPOLATION,
|
|
replace_example_docstring,
|
|
)
|
|
from diffusers.utils.torch_utils import randn_tensor
|
|
|
|
|
|
logger = logging.get_logger(__name__) # pylint: disable=invalid-name
|
|
|
|
EXAMPLE_DOC_STRING = """
|
|
Examples:
|
|
```py
|
|
>>> import numpy as np
|
|
>>> import torch
|
|
>>> from PIL import Image
|
|
>>> from diffusers import ControlNetModel, UniPCMultistepScheduler
|
|
>>> from diffusers.utils import load_image
|
|
|
|
>>> input_image = load_image("https://hf.co/datasets/huggingface/documentation-images/resolve/main/diffusers/input_image_vermeer.png")
|
|
|
|
>>> controlnet = ControlNetModel.from_pretrained("lllyasviel/sd-controlnet-canny", torch_dtype=torch.float16)
|
|
|
|
>>> pipe_controlnet = StableDiffusionControlNetImg2ImgPipeline.from_pretrained(
|
|
"stable-diffusion-v1-5/stable-diffusion-v1-5",
|
|
controlnet=controlnet,
|
|
safety_checker=None,
|
|
torch_dtype=torch.float16
|
|
)
|
|
|
|
>>> pipe_controlnet.scheduler = UniPCMultistepScheduler.from_config(pipe_controlnet.scheduler.config)
|
|
>>> pipe_controlnet.enable_xformers_memory_efficient_attention()
|
|
>>> pipe_controlnet.enable_model_cpu_offload()
|
|
|
|
# using image with edges for our canny controlnet
|
|
>>> control_image = load_image(
|
|
"https://hf.co/datasets/huggingface/documentation-images/resolve/main/diffusers/vermeer_canny_edged.png")
|
|
|
|
|
|
>>> result_img = pipe_controlnet(controlnet_conditioning_image=control_image,
|
|
image=input_image,
|
|
prompt="an android robot, cyberpank, digitl art masterpiece",
|
|
num_inference_steps=20).images[0]
|
|
|
|
>>> result_img.show()
|
|
```
|
|
"""
|
|
|
|
|
|
def prepare_image(image):
|
|
if isinstance(image, torch.Tensor):
|
|
# Batch single image
|
|
if image.ndim == 3:
|
|
image = image.unsqueeze(0)
|
|
|
|
image = image.to(dtype=torch.float32)
|
|
else:
|
|
# preprocess image
|
|
if isinstance(image, (PIL.Image.Image, np.ndarray)):
|
|
image = [image]
|
|
|
|
if isinstance(image, list) and isinstance(image[0], PIL.Image.Image):
|
|
image = [np.array(i.convert("RGB"))[None, :] for i in image]
|
|
image = np.concatenate(image, axis=0)
|
|
elif isinstance(image, list) and isinstance(image[0], np.ndarray):
|
|
image = np.concatenate([i[None, :] for i in image], axis=0)
|
|
|
|
image = image.transpose(0, 3, 1, 2)
|
|
image = torch.from_numpy(image).to(dtype=torch.float32) / 127.5 - 1.0
|
|
|
|
return image
|
|
|
|
|
|
def prepare_controlnet_conditioning_image(
|
|
controlnet_conditioning_image,
|
|
width,
|
|
height,
|
|
batch_size,
|
|
num_images_per_prompt,
|
|
device,
|
|
dtype,
|
|
do_classifier_free_guidance,
|
|
):
|
|
if not isinstance(controlnet_conditioning_image, torch.Tensor):
|
|
if isinstance(controlnet_conditioning_image, PIL.Image.Image):
|
|
controlnet_conditioning_image = [controlnet_conditioning_image]
|
|
|
|
if isinstance(controlnet_conditioning_image[0], PIL.Image.Image):
|
|
controlnet_conditioning_image = [
|
|
np.array(i.resize((width, height), resample=PIL_INTERPOLATION["lanczos"]))[None, :]
|
|
for i in controlnet_conditioning_image
|
|
]
|
|
controlnet_conditioning_image = np.concatenate(controlnet_conditioning_image, axis=0)
|
|
controlnet_conditioning_image = np.array(controlnet_conditioning_image).astype(np.float32) / 255.0
|
|
controlnet_conditioning_image = controlnet_conditioning_image.transpose(0, 3, 1, 2)
|
|
controlnet_conditioning_image = torch.from_numpy(controlnet_conditioning_image)
|
|
elif isinstance(controlnet_conditioning_image[0], torch.Tensor):
|
|
controlnet_conditioning_image = torch.cat(controlnet_conditioning_image, dim=0)
|
|
|
|
image_batch_size = controlnet_conditioning_image.shape[0]
|
|
|
|
if image_batch_size == 1:
|
|
repeat_by = batch_size
|
|
else:
|
|
# image batch size is the same as prompt batch size
|
|
repeat_by = num_images_per_prompt
|
|
|
|
controlnet_conditioning_image = controlnet_conditioning_image.repeat_interleave(repeat_by, dim=0)
|
|
|
|
controlnet_conditioning_image = controlnet_conditioning_image.to(device=device, dtype=dtype)
|
|
|
|
if do_classifier_free_guidance:
|
|
controlnet_conditioning_image = torch.cat([controlnet_conditioning_image] * 2)
|
|
|
|
return controlnet_conditioning_image
|
|
|
|
|
|
class StableDiffusionControlNetImg2ImgPipeline(DiffusionPipeline, StableDiffusionMixin):
|
|
"""
|
|
Inspired by: https://github.com/haofanwang/ControlNet-for-Diffusers/
|
|
"""
|
|
|
|
_optional_components = ["safety_checker", "feature_extractor"]
|
|
|
|
def __init__(
|
|
self,
|
|
vae: AutoencoderKL,
|
|
text_encoder: CLIPTextModel,
|
|
tokenizer: CLIPTokenizer,
|
|
unet: UNet2DConditionModel,
|
|
controlnet: Union[ControlNetModel, List[ControlNetModel], Tuple[ControlNetModel], MultiControlNetModel],
|
|
scheduler: KarrasDiffusionSchedulers,
|
|
safety_checker: StableDiffusionSafetyChecker,
|
|
feature_extractor: CLIPImageProcessor,
|
|
requires_safety_checker: bool = True,
|
|
):
|
|
super().__init__()
|
|
|
|
if safety_checker is None and requires_safety_checker:
|
|
logger.warning(
|
|
f"You have disabled the safety checker for {self.__class__} by passing `safety_checker=None`. Ensure"
|
|
" that you abide to the conditions of the Stable Diffusion license and do not expose unfiltered"
|
|
" results in services or applications open to the public. Both the diffusers team and Hugging Face"
|
|
" strongly recommend to keep the safety filter enabled in all public facing circumstances, disabling"
|
|
" it only for use-cases that involve analyzing network behavior or auditing its results. For more"
|
|
" information, please have a look at https://github.com/huggingface/diffusers/pull/254 ."
|
|
)
|
|
|
|
if safety_checker is not None and feature_extractor is None:
|
|
raise ValueError(
|
|
"Make sure to define a feature extractor when loading {self.__class__} if you want to use the safety"
|
|
" checker. If you do not want to use the safety checker, you can pass `'safety_checker=None'` instead."
|
|
)
|
|
|
|
if isinstance(controlnet, (list, tuple)):
|
|
controlnet = MultiControlNetModel(controlnet)
|
|
|
|
self.register_modules(
|
|
vae=vae,
|
|
text_encoder=text_encoder,
|
|
tokenizer=tokenizer,
|
|
unet=unet,
|
|
controlnet=controlnet,
|
|
scheduler=scheduler,
|
|
safety_checker=safety_checker,
|
|
feature_extractor=feature_extractor,
|
|
)
|
|
self.vae_scale_factor = 2 ** (len(self.vae.config.block_out_channels) - 1) if getattr(self, "vae", None) else 8
|
|
self.register_to_config(requires_safety_checker=requires_safety_checker)
|
|
|
|
def _encode_prompt(
|
|
self,
|
|
prompt,
|
|
device,
|
|
num_images_per_prompt,
|
|
do_classifier_free_guidance,
|
|
negative_prompt=None,
|
|
prompt_embeds: Optional[torch.Tensor] = None,
|
|
negative_prompt_embeds: Optional[torch.Tensor] = None,
|
|
):
|
|
r"""
|
|
Encodes the prompt into text encoder hidden states.
|
|
|
|
Args:
|
|
prompt (`str` or `List[str]`, *optional*):
|
|
prompt to be encoded
|
|
device: (`torch.device`):
|
|
torch device
|
|
num_images_per_prompt (`int`):
|
|
number of images that should be generated per prompt
|
|
do_classifier_free_guidance (`bool`):
|
|
whether to use classifier free guidance or not
|
|
negative_prompt (`str` or `List[str]`, *optional*):
|
|
The prompt or prompts not to guide the image generation. If not defined, one has to pass
|
|
`negative_prompt_embeds` instead. Ignored when not using guidance (i.e., ignored if `guidance_scale` is less than `1`).
|
|
prompt_embeds (`torch.Tensor`, *optional*):
|
|
Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not
|
|
provided, text embeddings will be generated from `prompt` input argument.
|
|
negative_prompt_embeds (`torch.Tensor`, *optional*):
|
|
Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt
|
|
weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input
|
|
argument.
|
|
"""
|
|
if prompt is not None and isinstance(prompt, str):
|
|
batch_size = 1
|
|
elif prompt is not None and isinstance(prompt, list):
|
|
batch_size = len(prompt)
|
|
else:
|
|
batch_size = prompt_embeds.shape[0]
|
|
|
|
if prompt_embeds is None:
|
|
text_inputs = self.tokenizer(
|
|
prompt,
|
|
padding="max_length",
|
|
max_length=self.tokenizer.model_max_length,
|
|
truncation=True,
|
|
return_tensors="pt",
|
|
)
|
|
text_input_ids = text_inputs.input_ids
|
|
untruncated_ids = self.tokenizer(prompt, padding="longest", return_tensors="pt").input_ids
|
|
|
|
if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and not torch.equal(
|
|
text_input_ids, untruncated_ids
|
|
):
|
|
removed_text = self.tokenizer.batch_decode(
|
|
untruncated_ids[:, self.tokenizer.model_max_length - 1 : -1]
|
|
)
|
|
logger.warning(
|
|
"The following part of your input was truncated because CLIP can only handle sequences up to"
|
|
f" {self.tokenizer.model_max_length} tokens: {removed_text}"
|
|
)
|
|
|
|
if hasattr(self.text_encoder.config, "use_attention_mask") and self.text_encoder.config.use_attention_mask:
|
|
attention_mask = text_inputs.attention_mask.to(device)
|
|
else:
|
|
attention_mask = None
|
|
|
|
prompt_embeds = self.text_encoder(
|
|
text_input_ids.to(device),
|
|
attention_mask=attention_mask,
|
|
)
|
|
prompt_embeds = prompt_embeds[0]
|
|
|
|
prompt_embeds = prompt_embeds.to(dtype=self.text_encoder.dtype, device=device)
|
|
|
|
bs_embed, seq_len, _ = prompt_embeds.shape
|
|
# duplicate text embeddings for each generation per prompt, using mps friendly method
|
|
prompt_embeds = prompt_embeds.repeat(1, num_images_per_prompt, 1)
|
|
prompt_embeds = prompt_embeds.view(bs_embed * num_images_per_prompt, seq_len, -1)
|
|
|
|
# get unconditional embeddings for classifier free guidance
|
|
if do_classifier_free_guidance and negative_prompt_embeds is None:
|
|
uncond_tokens: List[str]
|
|
if negative_prompt is None:
|
|
uncond_tokens = [""] * batch_size
|
|
elif type(prompt) is not type(negative_prompt):
|
|
raise TypeError(
|
|
f"`negative_prompt` should be the same type to `prompt`, but got {type(negative_prompt)} !="
|
|
f" {type(prompt)}."
|
|
)
|
|
elif isinstance(negative_prompt, str):
|
|
uncond_tokens = [negative_prompt]
|
|
elif batch_size != len(negative_prompt):
|
|
raise ValueError(
|
|
f"`negative_prompt`: {negative_prompt} has batch size {len(negative_prompt)}, but `prompt`:"
|
|
f" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches"
|
|
" the batch size of `prompt`."
|
|
)
|
|
else:
|
|
uncond_tokens = negative_prompt
|
|
|
|
max_length = prompt_embeds.shape[1]
|
|
uncond_input = self.tokenizer(
|
|
uncond_tokens,
|
|
padding="max_length",
|
|
max_length=max_length,
|
|
truncation=True,
|
|
return_tensors="pt",
|
|
)
|
|
|
|
if hasattr(self.text_encoder.config, "use_attention_mask") and self.text_encoder.config.use_attention_mask:
|
|
attention_mask = uncond_input.attention_mask.to(device)
|
|
else:
|
|
attention_mask = None
|
|
|
|
negative_prompt_embeds = self.text_encoder(
|
|
uncond_input.input_ids.to(device),
|
|
attention_mask=attention_mask,
|
|
)
|
|
negative_prompt_embeds = negative_prompt_embeds[0]
|
|
|
|
if do_classifier_free_guidance:
|
|
# duplicate unconditional embeddings for each generation per prompt, using mps friendly method
|
|
seq_len = negative_prompt_embeds.shape[1]
|
|
|
|
negative_prompt_embeds = negative_prompt_embeds.to(dtype=self.text_encoder.dtype, device=device)
|
|
|
|
negative_prompt_embeds = negative_prompt_embeds.repeat(1, num_images_per_prompt, 1)
|
|
negative_prompt_embeds = negative_prompt_embeds.view(batch_size * num_images_per_prompt, seq_len, -1)
|
|
|
|
# For classifier free guidance, we need to do two forward passes.
|
|
# Here we concatenate the unconditional and text embeddings into a single batch
|
|
# to avoid doing two forward passes
|
|
prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds])
|
|
|
|
return prompt_embeds
|
|
|
|
def run_safety_checker(self, image, device, dtype):
|
|
if self.safety_checker is not None:
|
|
safety_checker_input = self.feature_extractor(self.numpy_to_pil(image), return_tensors="pt").to(device)
|
|
image, has_nsfw_concept = self.safety_checker(
|
|
images=image, clip_input=safety_checker_input.pixel_values.to(dtype)
|
|
)
|
|
else:
|
|
has_nsfw_concept = None
|
|
return image, has_nsfw_concept
|
|
|
|
def decode_latents(self, latents):
|
|
latents = 1 / self.vae.config.scaling_factor * latents
|
|
image = self.vae.decode(latents).sample
|
|
image = (image / 2 + 0.5).clamp(0, 1)
|
|
# we always cast to float32 as this does not cause significant overhead and is compatible with bfloat16
|
|
image = image.cpu().permute(0, 2, 3, 1).float().numpy()
|
|
return image
|
|
|
|
def prepare_extra_step_kwargs(self, generator, eta):
|
|
# prepare extra kwargs for the scheduler step, since not all schedulers have the same signature
|
|
# eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers.
|
|
# eta corresponds to η in DDIM paper: https://huggingface.co/papers/2010.02502
|
|
# and should be between [0, 1]
|
|
|
|
accepts_eta = "eta" in set(inspect.signature(self.scheduler.step).parameters.keys())
|
|
extra_step_kwargs = {}
|
|
if accepts_eta:
|
|
extra_step_kwargs["eta"] = eta
|
|
|
|
# check if the scheduler accepts generator
|
|
accepts_generator = "generator" in set(inspect.signature(self.scheduler.step).parameters.keys())
|
|
if accepts_generator:
|
|
extra_step_kwargs["generator"] = generator
|
|
return extra_step_kwargs
|
|
|
|
def check_controlnet_conditioning_image(self, image, prompt, prompt_embeds):
|
|
image_is_pil = isinstance(image, PIL.Image.Image)
|
|
image_is_tensor = isinstance(image, torch.Tensor)
|
|
image_is_pil_list = isinstance(image, list) and isinstance(image[0], PIL.Image.Image)
|
|
image_is_tensor_list = isinstance(image, list) and isinstance(image[0], torch.Tensor)
|
|
|
|
if not image_is_pil and not image_is_tensor and not image_is_pil_list and not image_is_tensor_list:
|
|
raise TypeError(
|
|
"image must be passed and be one of PIL image, torch tensor, list of PIL images, or list of torch tensors"
|
|
)
|
|
|
|
if image_is_pil:
|
|
image_batch_size = 1
|
|
elif image_is_tensor:
|
|
image_batch_size = image.shape[0]
|
|
elif image_is_pil_list:
|
|
image_batch_size = len(image)
|
|
elif image_is_tensor_list:
|
|
image_batch_size = len(image)
|
|
else:
|
|
raise ValueError("controlnet condition image is not valid")
|
|
|
|
if prompt is not None and isinstance(prompt, str):
|
|
prompt_batch_size = 1
|
|
elif prompt is not None and isinstance(prompt, list):
|
|
prompt_batch_size = len(prompt)
|
|
elif prompt_embeds is not None:
|
|
prompt_batch_size = prompt_embeds.shape[0]
|
|
else:
|
|
raise ValueError("prompt or prompt_embeds are not valid")
|
|
|
|
if image_batch_size != 1 and image_batch_size != prompt_batch_size:
|
|
raise ValueError(
|
|
f"If image batch size is not 1, image batch size must be same as prompt batch size. image batch size: {image_batch_size}, prompt batch size: {prompt_batch_size}"
|
|
)
|
|
|
|
def check_inputs(
|
|
self,
|
|
prompt,
|
|
image,
|
|
controlnet_conditioning_image,
|
|
height,
|
|
width,
|
|
callback_steps,
|
|
negative_prompt=None,
|
|
prompt_embeds=None,
|
|
negative_prompt_embeds=None,
|
|
strength=None,
|
|
controlnet_guidance_start=None,
|
|
controlnet_guidance_end=None,
|
|
controlnet_conditioning_scale=None,
|
|
):
|
|
if height % 8 != 0 or width % 8 != 0:
|
|
raise ValueError(f"`height` and `width` have to be divisible by 8 but are {height} and {width}.")
|
|
|
|
if (callback_steps is None) or (
|
|
callback_steps is not None and (not isinstance(callback_steps, int) or callback_steps <= 0)
|
|
):
|
|
raise ValueError(
|
|
f"`callback_steps` has to be a positive integer but is {callback_steps} of type"
|
|
f" {type(callback_steps)}."
|
|
)
|
|
|
|
if prompt is not None and prompt_embeds is not None:
|
|
raise ValueError(
|
|
f"Cannot forward both `prompt`: {prompt} and `prompt_embeds`: {prompt_embeds}. Please make sure to"
|
|
" only forward one of the two."
|
|
)
|
|
elif prompt is None and prompt_embeds is None:
|
|
raise ValueError(
|
|
"Provide either `prompt` or `prompt_embeds`. Cannot leave both `prompt` and `prompt_embeds` undefined."
|
|
)
|
|
elif prompt is not None and (not isinstance(prompt, str) and not isinstance(prompt, list)):
|
|
raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(prompt)}")
|
|
|
|
if negative_prompt is not None and negative_prompt_embeds is not None:
|
|
raise ValueError(
|
|
f"Cannot forward both `negative_prompt`: {negative_prompt} and `negative_prompt_embeds`:"
|
|
f" {negative_prompt_embeds}. Please make sure to only forward one of the two."
|
|
)
|
|
|
|
if prompt_embeds is not None and negative_prompt_embeds is not None:
|
|
if prompt_embeds.shape != negative_prompt_embeds.shape:
|
|
raise ValueError(
|
|
"`prompt_embeds` and `negative_prompt_embeds` must have the same shape when passed directly, but"
|
|
f" got: `prompt_embeds` {prompt_embeds.shape} != `negative_prompt_embeds`"
|
|
f" {negative_prompt_embeds.shape}."
|
|
)
|
|
|
|
# check controlnet condition image
|
|
|
|
if isinstance(self.controlnet, ControlNetModel):
|
|
self.check_controlnet_conditioning_image(controlnet_conditioning_image, prompt, prompt_embeds)
|
|
elif isinstance(self.controlnet, MultiControlNetModel):
|
|
if not isinstance(controlnet_conditioning_image, list):
|
|
raise TypeError("For multiple controlnets: `image` must be type `list`")
|
|
|
|
if len(controlnet_conditioning_image) != len(self.controlnet.nets):
|
|
raise ValueError(
|
|
"For multiple controlnets: `image` must have the same length as the number of controlnets."
|
|
)
|
|
|
|
for image_ in controlnet_conditioning_image:
|
|
self.check_controlnet_conditioning_image(image_, prompt, prompt_embeds)
|
|
else:
|
|
assert False
|
|
|
|
# Check `controlnet_conditioning_scale`
|
|
|
|
if isinstance(self.controlnet, ControlNetModel):
|
|
if not isinstance(controlnet_conditioning_scale, float):
|
|
raise TypeError("For single controlnet: `controlnet_conditioning_scale` must be type `float`.")
|
|
elif isinstance(self.controlnet, MultiControlNetModel):
|
|
if isinstance(controlnet_conditioning_scale, list) and len(controlnet_conditioning_scale) != len(
|
|
self.controlnet.nets
|
|
):
|
|
raise ValueError(
|
|
"For multiple controlnets: When `controlnet_conditioning_scale` is specified as `list`, it must have"
|
|
" the same length as the number of controlnets"
|
|
)
|
|
else:
|
|
assert False
|
|
|
|
if isinstance(image, torch.Tensor):
|
|
if image.ndim != 3 and image.ndim != 4:
|
|
raise ValueError("`image` must have 3 or 4 dimensions")
|
|
|
|
if image.ndim == 3:
|
|
image_batch_size = 1
|
|
image_channels, image_height, image_width = image.shape
|
|
elif image.ndim == 4:
|
|
image_batch_size, image_channels, image_height, image_width = image.shape
|
|
else:
|
|
assert False
|
|
|
|
if image_channels != 3:
|
|
raise ValueError("`image` must have 3 channels")
|
|
|
|
if image.min() < -1 or image.max() > 1:
|
|
raise ValueError("`image` should be in range [-1, 1]")
|
|
|
|
if self.vae.config.latent_channels != self.unet.config.in_channels:
|
|
raise ValueError(
|
|
f"The config of `pipeline.unet` expects {self.unet.config.in_channels} but received"
|
|
f" latent channels: {self.vae.config.latent_channels},"
|
|
f" Please verify the config of `pipeline.unet` and the `pipeline.vae`"
|
|
)
|
|
|
|
if strength < 0 or strength > 1:
|
|
raise ValueError(f"The value of `strength` should in [0.0, 1.0] but is {strength}")
|
|
|
|
if controlnet_guidance_start < 0 or controlnet_guidance_start > 1:
|
|
raise ValueError(
|
|
f"The value of `controlnet_guidance_start` should in [0.0, 1.0] but is {controlnet_guidance_start}"
|
|
)
|
|
|
|
if controlnet_guidance_end < 0 or controlnet_guidance_end > 1:
|
|
raise ValueError(
|
|
f"The value of `controlnet_guidance_end` should in [0.0, 1.0] but is {controlnet_guidance_end}"
|
|
)
|
|
|
|
if controlnet_guidance_start > controlnet_guidance_end:
|
|
raise ValueError(
|
|
"The value of `controlnet_guidance_start` should be less than `controlnet_guidance_end`, but got"
|
|
f" `controlnet_guidance_start` {controlnet_guidance_start} >= `controlnet_guidance_end` {controlnet_guidance_end}"
|
|
)
|
|
|
|
def get_timesteps(self, num_inference_steps, strength, device):
|
|
# get the original timestep using init_timestep
|
|
init_timestep = min(int(num_inference_steps * strength), num_inference_steps)
|
|
|
|
t_start = max(num_inference_steps - init_timestep, 0)
|
|
timesteps = self.scheduler.timesteps[t_start:]
|
|
|
|
return timesteps, num_inference_steps - t_start
|
|
|
|
def prepare_latents(self, image, timestep, batch_size, num_images_per_prompt, dtype, device, generator=None):
|
|
if not isinstance(image, (torch.Tensor, PIL.Image.Image, list)):
|
|
raise ValueError(
|
|
f"`image` has to be of type `torch.Tensor`, `PIL.Image.Image` or list but is {type(image)}"
|
|
)
|
|
|
|
image = image.to(device=device, dtype=dtype)
|
|
|
|
batch_size = batch_size * num_images_per_prompt
|
|
if isinstance(generator, list) and len(generator) != batch_size:
|
|
raise ValueError(
|
|
f"You have passed a list of generators of length {len(generator)}, but requested an effective batch"
|
|
f" size of {batch_size}. Make sure the batch size matches the length of the generators."
|
|
)
|
|
|
|
if isinstance(generator, list):
|
|
init_latents = [
|
|
self.vae.encode(image[i : i + 1]).latent_dist.sample(generator[i]) for i in range(batch_size)
|
|
]
|
|
init_latents = torch.cat(init_latents, dim=0)
|
|
else:
|
|
init_latents = self.vae.encode(image).latent_dist.sample(generator)
|
|
|
|
init_latents = self.vae.config.scaling_factor * init_latents
|
|
|
|
if batch_size > init_latents.shape[0] and batch_size % init_latents.shape[0] == 0:
|
|
raise ValueError(
|
|
f"Cannot duplicate `image` of batch size {init_latents.shape[0]} to {batch_size} text prompts."
|
|
)
|
|
else:
|
|
init_latents = torch.cat([init_latents], dim=0)
|
|
|
|
shape = init_latents.shape
|
|
noise = randn_tensor(shape, generator=generator, device=device, dtype=dtype)
|
|
|
|
# get latents
|
|
init_latents = self.scheduler.add_noise(init_latents, noise, timestep)
|
|
latents = init_latents
|
|
|
|
return latents
|
|
|
|
def _default_height_width(self, height, width, image):
|
|
if isinstance(image, list):
|
|
image = image[0]
|
|
|
|
if height is None:
|
|
if isinstance(image, PIL.Image.Image):
|
|
height = image.height
|
|
elif isinstance(image, torch.Tensor):
|
|
height = image.shape[3]
|
|
|
|
height = (height // 8) * 8 # round down to nearest multiple of 8
|
|
|
|
if width is None:
|
|
if isinstance(image, PIL.Image.Image):
|
|
width = image.width
|
|
elif isinstance(image, torch.Tensor):
|
|
width = image.shape[2]
|
|
|
|
width = (width // 8) * 8 # round down to nearest multiple of 8
|
|
|
|
return height, width
|
|
|
|
@torch.no_grad()
|
|
@replace_example_docstring(EXAMPLE_DOC_STRING)
|
|
def __call__(
|
|
self,
|
|
prompt: Union[str, List[str]] = None,
|
|
image: Union[torch.Tensor, PIL.Image.Image] = None,
|
|
controlnet_conditioning_image: Union[
|
|
torch.Tensor, PIL.Image.Image, List[torch.Tensor], List[PIL.Image.Image]
|
|
] = None,
|
|
strength: float = 0.8,
|
|
height: Optional[int] = None,
|
|
width: Optional[int] = None,
|
|
num_inference_steps: int = 50,
|
|
guidance_scale: float = 7.5,
|
|
negative_prompt: Optional[Union[str, List[str]]] = None,
|
|
num_images_per_prompt: Optional[int] = 1,
|
|
eta: float = 0.0,
|
|
generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
|
|
latents: Optional[torch.Tensor] = None,
|
|
prompt_embeds: Optional[torch.Tensor] = None,
|
|
negative_prompt_embeds: Optional[torch.Tensor] = None,
|
|
output_type: Optional[str] = "pil",
|
|
return_dict: bool = True,
|
|
callback: Optional[Callable[[int, int, torch.Tensor], None]] = None,
|
|
callback_steps: int = 1,
|
|
cross_attention_kwargs: Optional[Dict[str, Any]] = None,
|
|
controlnet_conditioning_scale: Union[float, List[float]] = 1.0,
|
|
controlnet_guidance_start: float = 0.0,
|
|
controlnet_guidance_end: float = 1.0,
|
|
):
|
|
r"""
|
|
Function invoked when calling the pipeline for generation.
|
|
|
|
Args:
|
|
prompt (`str` or `List[str]`, *optional*):
|
|
The prompt or prompts to guide the image generation. If not defined, one has to pass `prompt_embeds`.
|
|
instead.
|
|
image (`torch.Tensor` or `PIL.Image.Image`):
|
|
`Image`, or tensor representing an image batch which will be inpainted, *i.e.* parts of the image will
|
|
be masked out with `mask_image` and repainted according to `prompt`.
|
|
controlnet_conditioning_image (`torch.Tensor`, `PIL.Image.Image`, `List[torch.Tensor]` or `List[PIL.Image.Image]`):
|
|
The ControlNet input condition. ControlNet uses this input condition to generate guidance to Unet. If
|
|
the type is specified as `torch.Tensor`, it is passed to ControlNet as is. PIL.Image.Image` can
|
|
also be accepted as an image. The control image is automatically resized to fit the output image.
|
|
strength (`float`, *optional*):
|
|
Conceptually, indicates how much to transform the reference `image`. Must be between 0 and 1. `image`
|
|
will be used as a starting point, adding more noise to it the larger the `strength`. The number of
|
|
denoising steps depends on the amount of noise initially added. When `strength` is 1, added noise will
|
|
be maximum and the denoising process will run for the full number of iterations specified in
|
|
`num_inference_steps`. A value of 1, therefore, essentially ignores `image`.
|
|
height (`int`, *optional*, defaults to self.unet.config.sample_size * self.vae_scale_factor):
|
|
The height in pixels of the generated image.
|
|
width (`int`, *optional*, defaults to self.unet.config.sample_size * self.vae_scale_factor):
|
|
The width in pixels of the generated image.
|
|
num_inference_steps (`int`, *optional*, defaults to 50):
|
|
The number of denoising steps. More denoising steps usually lead to a higher quality image at the
|
|
expense of slower inference.
|
|
guidance_scale (`float`, *optional*, defaults to 7.5):
|
|
Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://huggingface.co/papers/2207.12598).
|
|
`guidance_scale` is defined as `w` of equation 2. of [Imagen
|
|
Paper](https://huggingface.co/papers/2205.11487). Guidance scale is enabled by setting `guidance_scale >
|
|
1`. Higher guidance scale encourages to generate images that are closely linked to the text `prompt`,
|
|
usually at the expense of lower image quality.
|
|
negative_prompt (`str` or `List[str]`, *optional*):
|
|
The prompt or prompts not to guide the image generation. If not defined, one has to pass
|
|
`negative_prompt_embeds` instead. Ignored when not using guidance (i.e., ignored if `guidance_scale` is less than `1`).
|
|
num_images_per_prompt (`int`, *optional*, defaults to 1):
|
|
The number of images to generate per prompt.
|
|
eta (`float`, *optional*, defaults to 0.0):
|
|
Corresponds to parameter eta (η) in the DDIM paper: https://huggingface.co/papers/2010.02502. Only applies to
|
|
[`schedulers.DDIMScheduler`], will be ignored for others.
|
|
generator (`torch.Generator` or `List[torch.Generator]`, *optional*):
|
|
One or a list of [torch generator(s)](https://pytorch.org/docs/stable/generated/torch.Generator.html)
|
|
to make generation deterministic.
|
|
latents (`torch.Tensor`, *optional*):
|
|
Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for image
|
|
generation. Can be used to tweak the same generation with different prompts. If not provided, a latents
|
|
tensor will be generated by sampling using the supplied random `generator`.
|
|
prompt_embeds (`torch.Tensor`, *optional*):
|
|
Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not
|
|
provided, text embeddings will be generated from `prompt` input argument.
|
|
negative_prompt_embeds (`torch.Tensor`, *optional*):
|
|
Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt
|
|
weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input
|
|
argument.
|
|
output_type (`str`, *optional*, defaults to `"pil"`):
|
|
The output format of the generate image. Choose between
|
|
[PIL](https://pillow.readthedocs.io/en/stable/): `PIL.Image.Image` or `np.array`.
|
|
return_dict (`bool`, *optional*, defaults to `True`):
|
|
Whether or not to return a [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] instead of a
|
|
plain tuple.
|
|
callback (`Callable`, *optional*):
|
|
A function that will be called every `callback_steps` steps during inference. The function will be
|
|
called with the following arguments: `callback(step: int, timestep: int, latents: torch.Tensor)`.
|
|
callback_steps (`int`, *optional*, defaults to 1):
|
|
The frequency at which the `callback` function will be called. If not specified, the callback will be
|
|
called at every step.
|
|
cross_attention_kwargs (`dict`, *optional*):
|
|
A kwargs dictionary that if specified is passed along to the `AttentionProcessor` as defined under
|
|
`self.processor` in
|
|
[diffusers.models.attention_processor](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py).
|
|
controlnet_conditioning_scale (`float`, *optional*, defaults to 1.0):
|
|
The outputs of the controlnet are multiplied by `controlnet_conditioning_scale` before they are added
|
|
to the residual in the original unet.
|
|
controlnet_guidance_start ('float', *optional*, defaults to 0.0):
|
|
The percentage of total steps the controlnet starts applying. Must be between 0 and 1.
|
|
controlnet_guidance_end ('float', *optional*, defaults to 1.0):
|
|
The percentage of total steps the controlnet ends applying. Must be between 0 and 1. Must be greater
|
|
than `controlnet_guidance_start`.
|
|
|
|
Examples:
|
|
|
|
Returns:
|
|
[`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] or `tuple`:
|
|
[`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] if `return_dict` is True, otherwise a `tuple.
|
|
When returning a tuple, the first element is a list with the generated images, and the second element is a
|
|
list of `bool`s denoting whether the corresponding generated image likely represents "not-safe-for-work"
|
|
(nsfw) content, according to the `safety_checker`.
|
|
"""
|
|
# 0. Default height and width to unet
|
|
height, width = self._default_height_width(height, width, controlnet_conditioning_image)
|
|
|
|
# 1. Check inputs. Raise error if not correct
|
|
self.check_inputs(
|
|
prompt,
|
|
image,
|
|
controlnet_conditioning_image,
|
|
height,
|
|
width,
|
|
callback_steps,
|
|
negative_prompt,
|
|
prompt_embeds,
|
|
negative_prompt_embeds,
|
|
strength,
|
|
controlnet_guidance_start,
|
|
controlnet_guidance_end,
|
|
controlnet_conditioning_scale,
|
|
)
|
|
|
|
# 2. Define call parameters
|
|
if prompt is not None and isinstance(prompt, str):
|
|
batch_size = 1
|
|
elif prompt is not None and isinstance(prompt, list):
|
|
batch_size = len(prompt)
|
|
else:
|
|
batch_size = prompt_embeds.shape[0]
|
|
|
|
device = self._execution_device
|
|
# here `guidance_scale` is defined analog to the guidance weight `w` of equation (2)
|
|
# of the Imagen paper: https://huggingface.co/papers/2205.11487 . `guidance_scale = 1`
|
|
# corresponds to doing no classifier free guidance.
|
|
do_classifier_free_guidance = guidance_scale > 1.0
|
|
|
|
if isinstance(self.controlnet, MultiControlNetModel) and isinstance(controlnet_conditioning_scale, float):
|
|
controlnet_conditioning_scale = [controlnet_conditioning_scale] * len(self.controlnet.nets)
|
|
|
|
# 3. Encode input prompt
|
|
prompt_embeds = self._encode_prompt(
|
|
prompt,
|
|
device,
|
|
num_images_per_prompt,
|
|
do_classifier_free_guidance,
|
|
negative_prompt,
|
|
prompt_embeds=prompt_embeds,
|
|
negative_prompt_embeds=negative_prompt_embeds,
|
|
)
|
|
|
|
# 4. Prepare image, and controlnet_conditioning_image
|
|
image = prepare_image(image)
|
|
|
|
# condition image(s)
|
|
if isinstance(self.controlnet, ControlNetModel):
|
|
controlnet_conditioning_image = prepare_controlnet_conditioning_image(
|
|
controlnet_conditioning_image=controlnet_conditioning_image,
|
|
width=width,
|
|
height=height,
|
|
batch_size=batch_size * num_images_per_prompt,
|
|
num_images_per_prompt=num_images_per_prompt,
|
|
device=device,
|
|
dtype=self.controlnet.dtype,
|
|
do_classifier_free_guidance=do_classifier_free_guidance,
|
|
)
|
|
elif isinstance(self.controlnet, MultiControlNetModel):
|
|
controlnet_conditioning_images = []
|
|
|
|
for image_ in controlnet_conditioning_image:
|
|
image_ = prepare_controlnet_conditioning_image(
|
|
controlnet_conditioning_image=image_,
|
|
width=width,
|
|
height=height,
|
|
batch_size=batch_size * num_images_per_prompt,
|
|
num_images_per_prompt=num_images_per_prompt,
|
|
device=device,
|
|
dtype=self.controlnet.dtype,
|
|
do_classifier_free_guidance=do_classifier_free_guidance,
|
|
)
|
|
|
|
controlnet_conditioning_images.append(image_)
|
|
|
|
controlnet_conditioning_image = controlnet_conditioning_images
|
|
else:
|
|
assert False
|
|
|
|
# 5. Prepare timesteps
|
|
self.scheduler.set_timesteps(num_inference_steps, device=device)
|
|
timesteps, num_inference_steps = self.get_timesteps(num_inference_steps, strength, device)
|
|
latent_timestep = timesteps[:1].repeat(batch_size * num_images_per_prompt)
|
|
|
|
# 6. Prepare latent variables
|
|
if latents is None:
|
|
latents = self.prepare_latents(
|
|
image,
|
|
latent_timestep,
|
|
batch_size,
|
|
num_images_per_prompt,
|
|
prompt_embeds.dtype,
|
|
device,
|
|
generator,
|
|
)
|
|
|
|
# 7. Prepare extra step kwargs. TODO: Logic should ideally just be moved out of the pipeline
|
|
extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta)
|
|
|
|
# 8. Denoising loop
|
|
num_warmup_steps = len(timesteps) - num_inference_steps * self.scheduler.order
|
|
with self.progress_bar(total=num_inference_steps) as progress_bar:
|
|
for i, t in enumerate(timesteps):
|
|
# expand the latents if we are doing classifier free guidance
|
|
latent_model_input = torch.cat([latents] * 2) if do_classifier_free_guidance else latents
|
|
|
|
latent_model_input = self.scheduler.scale_model_input(latent_model_input, t)
|
|
|
|
# compute the percentage of total steps we are at
|
|
current_sampling_percent = i / len(timesteps)
|
|
|
|
if (
|
|
current_sampling_percent < controlnet_guidance_start
|
|
or current_sampling_percent > controlnet_guidance_end
|
|
):
|
|
# do not apply the controlnet
|
|
down_block_res_samples = None
|
|
mid_block_res_sample = None
|
|
else:
|
|
# apply the controlnet
|
|
down_block_res_samples, mid_block_res_sample = self.controlnet(
|
|
latent_model_input,
|
|
t,
|
|
encoder_hidden_states=prompt_embeds,
|
|
controlnet_cond=controlnet_conditioning_image,
|
|
conditioning_scale=controlnet_conditioning_scale,
|
|
return_dict=False,
|
|
)
|
|
|
|
# predict the noise residual
|
|
noise_pred = self.unet(
|
|
latent_model_input,
|
|
t,
|
|
encoder_hidden_states=prompt_embeds,
|
|
cross_attention_kwargs=cross_attention_kwargs,
|
|
down_block_additional_residuals=down_block_res_samples,
|
|
mid_block_additional_residual=mid_block_res_sample,
|
|
).sample
|
|
|
|
# perform guidance
|
|
if do_classifier_free_guidance:
|
|
noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
|
|
noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond)
|
|
|
|
# compute the previous noisy sample x_t -> x_t-1
|
|
latents = self.scheduler.step(noise_pred, t, latents, **extra_step_kwargs).prev_sample
|
|
|
|
# call the callback, if provided
|
|
if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0):
|
|
progress_bar.update()
|
|
if callback is not None and i % callback_steps == 0:
|
|
step_idx = i // getattr(self.scheduler, "order", 1)
|
|
callback(step_idx, t, latents)
|
|
|
|
# If we do sequential model offloading, let's offload unet and controlnet
|
|
# manually for max memory savings
|
|
if hasattr(self, "final_offload_hook") and self.final_offload_hook is not None:
|
|
self.unet.to("cpu")
|
|
self.controlnet.to("cpu")
|
|
torch.cuda.empty_cache()
|
|
|
|
if output_type == "latent":
|
|
image = latents
|
|
has_nsfw_concept = None
|
|
elif output_type == "pil":
|
|
# 8. Post-processing
|
|
image = self.decode_latents(latents)
|
|
|
|
# 9. Run safety checker
|
|
image, has_nsfw_concept = self.run_safety_checker(image, device, prompt_embeds.dtype)
|
|
|
|
# 10. Convert to PIL
|
|
image = self.numpy_to_pil(image)
|
|
else:
|
|
# 8. Post-processing
|
|
image = self.decode_latents(latents)
|
|
|
|
# 9. Run safety checker
|
|
image, has_nsfw_concept = self.run_safety_checker(image, device, prompt_embeds.dtype)
|
|
|
|
# Offload last model to CPU
|
|
if hasattr(self, "final_offload_hook") and self.final_offload_hook is not None:
|
|
self.final_offload_hook.offload()
|
|
|
|
if not return_dict:
|
|
return (image, has_nsfw_concept)
|
|
|
|
return StableDiffusionPipelineOutput(images=image, nsfw_content_detected=has_nsfw_concept)
|