mirror of
https://github.com/huggingface/diffusers.git
synced 2026-01-27 17:22:53 +03:00
* Update pipeline_skyreels_v2_i2v.py * Update README.md * Update torch_utils.py * Update torch_utils.py * Update guider_utils.py * Update pipeline_ltx.py * Update pipeline_bria.py * Apply suggestion from @qgallouedec * Update autoencoder_kl_qwenimage.py * Update pipeline_prx.py * Update pipeline_wan_vace.py * Update pipeline_skyreels_v2.py * Update pipeline_skyreels_v2_diffusion_forcing.py * Update pipeline_bria_fibo.py * Update pipeline_skyreels_v2_diffusion_forcing_i2v.py * Update pipeline_ltx_condition.py * Update pipeline_ltx_image2video.py * Update regional_prompting_stable_diffusion.py * make style * style * style
1691 lines
78 KiB
Python
1691 lines
78 KiB
Python
import inspect
|
|
import math
|
|
from typing import Any, Callable, Dict, List, Optional, Union
|
|
|
|
import torch
|
|
import torchvision.transforms.functional as FF
|
|
from transformers import CLIPImageProcessor, CLIPTextModel, CLIPTokenizer, CLIPVisionModelWithProjection
|
|
|
|
from diffusers.callbacks import MultiPipelineCallbacks, PipelineCallback
|
|
from diffusers.image_processor import PipelineImageInput, VaeImageProcessor
|
|
from diffusers.loaders import StableDiffusionLoraLoaderMixin
|
|
from diffusers.loaders.ip_adapter import IPAdapterMixin
|
|
from diffusers.loaders.lora_pipeline import LoraLoaderMixin
|
|
from diffusers.loaders.single_file import FromSingleFileMixin
|
|
from diffusers.loaders.textual_inversion import TextualInversionLoaderMixin
|
|
from diffusers.models import AutoencoderKL, UNet2DConditionModel
|
|
from diffusers.models.lora import adjust_lora_scale_text_encoder
|
|
from diffusers.pipelines.pipeline_utils import DiffusionPipeline
|
|
from diffusers.pipelines.stable_diffusion.pipeline_output import StableDiffusionPipelineOutput
|
|
from diffusers.pipelines.stable_diffusion.safety_checker import StableDiffusionSafetyChecker
|
|
from diffusers.schedulers import KarrasDiffusionSchedulers
|
|
from diffusers.utils import (
|
|
USE_PEFT_BACKEND,
|
|
deprecate,
|
|
is_torch_xla_available,
|
|
logging,
|
|
scale_lora_layers,
|
|
unscale_lora_layers,
|
|
)
|
|
from diffusers.utils.torch_utils import randn_tensor
|
|
|
|
|
|
logger = logging.get_logger(__name__) # pylint: disable=invalid-name
|
|
|
|
if is_torch_xla_available():
|
|
import torch_xla.core.xla_model as xm
|
|
|
|
XLA_AVAILABLE = True
|
|
else:
|
|
XLA_AVAILABLE = False
|
|
|
|
|
|
try:
|
|
from compel import Compel
|
|
except ImportError:
|
|
Compel = None
|
|
|
|
KBASE = "ADDBASE"
|
|
KCOMM = "ADDCOMM"
|
|
KBRK = "BREAK"
|
|
|
|
|
|
class RegionalPromptingStableDiffusionPipeline(
|
|
DiffusionPipeline,
|
|
TextualInversionLoaderMixin,
|
|
LoraLoaderMixin,
|
|
IPAdapterMixin,
|
|
FromSingleFileMixin,
|
|
StableDiffusionLoraLoaderMixin,
|
|
):
|
|
r"""
|
|
Args for Regional Prompting Pipeline:
|
|
rp_args:dict
|
|
Required
|
|
rp_args["mode"]: cols, rows, prompt, prompt-ex
|
|
for cols, rows mode
|
|
rp_args["div"]: ex) 1;1;1(Divide into 3 regions)
|
|
for prompt, prompt-ex mode
|
|
rp_args["th"]: ex) 0.5,0.5,0.6 (threshold for prompt mode)
|
|
|
|
Optional
|
|
rp_args["save_mask"]: True/False (save masks in prompt mode)
|
|
rp_args["power"]: int (power for attention maps in prompt mode)
|
|
rp_args["base_ratio"]:
|
|
float (Sets the ratio of the base prompt)
|
|
ex) 0.2 (20%*BASE_PROMPT + 80%*REGION_PROMPT)
|
|
[Use base prompt](https://github.com/hako-mikan/sd-webui-regional-prompter?tab=readme-ov-file#use-base-prompt)
|
|
|
|
Pipeline for text-to-image generation using Stable Diffusion.
|
|
|
|
This model inherits from [`DiffusionPipeline`]. Check the superclass documentation for the generic methods the
|
|
library implements for all the pipelines (such as downloading or saving, running on a particular device, etc.)
|
|
|
|
Args:
|
|
vae ([`AutoencoderKL`]):
|
|
Variational Auto-Encoder (VAE) Model to encode and decode images to and from latent representations.
|
|
text_encoder ([`CLIPTextModel`]):
|
|
Frozen text-encoder. Stable Diffusion uses the text portion of
|
|
[CLIP](https://huggingface.co/docs/transformers/model_doc/clip#transformers.CLIPTextModel), specifically
|
|
the [clip-vit-large-patch14](https://huggingface.co/openai/clip-vit-large-patch14) variant.
|
|
tokenizer (`CLIPTokenizer`):
|
|
Tokenizer of class
|
|
[CLIPTokenizer](https://huggingface.co/docs/transformers/v4.21.0/en/model_doc/clip#transformers.CLIPTokenizer).
|
|
unet ([`UNet2DConditionModel`]): Conditional U-Net architecture to denoise the encoded image latents.
|
|
scheduler ([`SchedulerMixin`]):
|
|
A scheduler to be used in combination with `unet` to denoise the encoded image latents. Can be one of
|
|
[`DDIMScheduler`], [`LMSDiscreteScheduler`], or [`PNDMScheduler`].
|
|
safety_checker ([`StableDiffusionSafetyChecker`]):
|
|
Classification module that estimates whether generated images could be considered offensive or harmful.
|
|
Please, refer to the [model card](https://huggingface.co/CompVis/stable-diffusion-v1-4) for details.
|
|
feature_extractor ([`CLIPImageProcessor`]):
|
|
Model that extracts features from generated images to be used as inputs for the `safety_checker`.
|
|
"""
|
|
|
|
def __init__(
|
|
self,
|
|
vae: AutoencoderKL,
|
|
text_encoder: CLIPTextModel,
|
|
tokenizer: CLIPTokenizer,
|
|
unet: UNet2DConditionModel,
|
|
scheduler: KarrasDiffusionSchedulers,
|
|
safety_checker: StableDiffusionSafetyChecker,
|
|
feature_extractor: CLIPImageProcessor,
|
|
image_encoder: CLIPVisionModelWithProjection = None,
|
|
requires_safety_checker: bool = True,
|
|
):
|
|
super().__init__()
|
|
self.register_modules(
|
|
vae=vae,
|
|
text_encoder=text_encoder,
|
|
tokenizer=tokenizer,
|
|
unet=unet,
|
|
scheduler=scheduler,
|
|
safety_checker=safety_checker,
|
|
feature_extractor=feature_extractor,
|
|
image_encoder=image_encoder,
|
|
)
|
|
self.vae_scale_factor = 2 ** (len(self.vae.config.block_out_channels) - 1) if getattr(self, "vae", None) else 8
|
|
self.image_processor = VaeImageProcessor(vae_scale_factor=self.vae_scale_factor)
|
|
self.register_to_config(requires_safety_checker=requires_safety_checker)
|
|
|
|
# Initialize additional properties needed for DiffusionPipeline
|
|
self._num_timesteps = None
|
|
self._interrupt = False
|
|
self._guidance_scale = 7.5
|
|
self._guidance_rescale = 0.0
|
|
self._clip_skip = None
|
|
self._cross_attention_kwargs = None
|
|
|
|
@torch.no_grad()
|
|
def __call__(
|
|
self,
|
|
prompt: str,
|
|
height: int = 512,
|
|
width: int = 512,
|
|
num_inference_steps: int = 50,
|
|
guidance_scale: float = 7.5,
|
|
negative_prompt: str = None,
|
|
num_images_per_prompt: Optional[int] = 1,
|
|
eta: float = 0.0,
|
|
generator: Optional[torch.Generator] = None,
|
|
latents: Optional[torch.Tensor] = None,
|
|
output_type: Optional[str] = "pil",
|
|
return_dict: bool = True,
|
|
rp_args: Dict[str, str] = None,
|
|
):
|
|
active = KBRK in prompt[0] if isinstance(prompt, list) else KBRK in prompt
|
|
use_base = KBASE in prompt[0] if isinstance(prompt, list) else KBASE in prompt
|
|
if negative_prompt is None:
|
|
negative_prompt = "" if isinstance(prompt, str) else [""] * len(prompt)
|
|
|
|
device = self._execution_device
|
|
regions = 0
|
|
|
|
self.base_ratio = float(rp_args["base_ratio"]) if "base_ratio" in rp_args else 0.0
|
|
self.power = int(rp_args["power"]) if "power" in rp_args else 1
|
|
|
|
prompts = prompt if isinstance(prompt, list) else [prompt]
|
|
n_prompts = negative_prompt if isinstance(negative_prompt, list) else [negative_prompt]
|
|
self.batch = batch = num_images_per_prompt * len(prompts)
|
|
|
|
if use_base:
|
|
bases = prompts.copy()
|
|
n_bases = n_prompts.copy()
|
|
|
|
for i, prompt in enumerate(prompts):
|
|
parts = prompt.split(KBASE)
|
|
if len(parts) == 2:
|
|
bases[i], prompts[i] = parts
|
|
elif len(parts) > 2:
|
|
raise ValueError(f"Multiple instances of {KBASE} found in prompt: {prompt}")
|
|
for i, prompt in enumerate(n_prompts):
|
|
n_parts = prompt.split(KBASE)
|
|
if len(n_parts) == 2:
|
|
n_bases[i], n_prompts[i] = n_parts
|
|
elif len(n_parts) > 2:
|
|
raise ValueError(f"Multiple instances of {KBASE} found in negative prompt: {prompt}")
|
|
|
|
all_bases_cn, _ = promptsmaker(bases, num_images_per_prompt)
|
|
all_n_bases_cn, _ = promptsmaker(n_bases, num_images_per_prompt)
|
|
|
|
all_prompts_cn, all_prompts_p = promptsmaker(prompts, num_images_per_prompt)
|
|
all_n_prompts_cn, _ = promptsmaker(n_prompts, num_images_per_prompt)
|
|
|
|
equal = len(all_prompts_cn) == len(all_n_prompts_cn)
|
|
|
|
if Compel:
|
|
compel = Compel(tokenizer=self.tokenizer, text_encoder=self.text_encoder)
|
|
|
|
def getcompelembs(prps):
|
|
embl = []
|
|
for prp in prps:
|
|
embl.append(compel.build_conditioning_tensor(prp))
|
|
return torch.cat(embl)
|
|
|
|
conds = getcompelembs(all_prompts_cn)
|
|
unconds = getcompelembs(all_n_prompts_cn)
|
|
base_embs = getcompelembs(all_bases_cn) if use_base else None
|
|
base_n_embs = getcompelembs(all_n_bases_cn) if use_base else None
|
|
# When using base, it seems more reasonable to use base prompts as prompt_embeddings rather than regional prompts
|
|
embs = getcompelembs(prompts) if not use_base else base_embs
|
|
n_embs = getcompelembs(n_prompts) if not use_base else base_n_embs
|
|
|
|
if use_base and self.base_ratio > 0:
|
|
conds = self.base_ratio * base_embs + (1 - self.base_ratio) * conds
|
|
unconds = self.base_ratio * base_n_embs + (1 - self.base_ratio) * unconds
|
|
|
|
prompt = negative_prompt = None
|
|
else:
|
|
conds = self.encode_prompt(prompts, device, 1, True)[0]
|
|
unconds = (
|
|
self.encode_prompt(n_prompts, device, 1, True)[0]
|
|
if equal
|
|
else self.encode_prompt(all_n_prompts_cn, device, 1, True)[0]
|
|
)
|
|
|
|
if use_base and self.base_ratio > 0:
|
|
base_embs = self.encode_prompt(bases, device, 1, True)[0]
|
|
base_n_embs = (
|
|
self.encode_prompt(n_bases, device, 1, True)[0]
|
|
if equal
|
|
else self.encode_prompt(all_n_bases_cn, device, 1, True)[0]
|
|
)
|
|
|
|
conds = self.base_ratio * base_embs + (1 - self.base_ratio) * conds
|
|
unconds = self.base_ratio * base_n_embs + (1 - self.base_ratio) * unconds
|
|
|
|
embs = n_embs = None
|
|
|
|
if not active:
|
|
pcallback = None
|
|
mode = None
|
|
else:
|
|
if any(x in rp_args["mode"].upper() for x in ["COL", "ROW"]):
|
|
mode = "COL" if "COL" in rp_args["mode"].upper() else "ROW"
|
|
ocells, icells, regions = make_cells(rp_args["div"])
|
|
|
|
elif "PRO" in rp_args["mode"].upper():
|
|
regions = len(all_prompts_p[0])
|
|
mode = "PROMPT"
|
|
reset_attnmaps(self)
|
|
self.ex = "EX" in rp_args["mode"].upper()
|
|
self.target_tokens = target_tokens = tokendealer(self, all_prompts_p)
|
|
thresholds = [float(x) for x in rp_args["th"].split(",")]
|
|
|
|
orig_hw = (height, width)
|
|
revers = True
|
|
|
|
def pcallback(s_self, step: int, timestep: int, latents: torch.Tensor, selfs=None):
|
|
if "PRO" in mode: # in Prompt mode, make masks from sum of attention maps
|
|
self.step = step
|
|
|
|
if len(self.attnmaps_sizes) > 3:
|
|
self.history[step] = self.attnmaps.copy()
|
|
for hw in self.attnmaps_sizes:
|
|
allmasks = []
|
|
basemasks = [None] * batch
|
|
for tt, th in zip(target_tokens, thresholds):
|
|
for b in range(batch):
|
|
key = f"{tt}-{b}"
|
|
_, mask, _ = makepmask(self, self.attnmaps[key], hw[0], hw[1], th, step)
|
|
mask = mask.unsqueeze(0).unsqueeze(-1)
|
|
if self.ex:
|
|
allmasks[b::batch] = [x - mask for x in allmasks[b::batch]]
|
|
allmasks[b::batch] = [torch.where(x > 0, 1, 0) for x in allmasks[b::batch]]
|
|
allmasks.append(mask)
|
|
basemasks[b] = mask if basemasks[b] is None else basemasks[b] + mask
|
|
basemasks = [1 - mask for mask in basemasks]
|
|
basemasks = [torch.where(x > 0, 1, 0) for x in basemasks]
|
|
allmasks = basemasks + allmasks
|
|
|
|
self.attnmasks[hw] = torch.cat(allmasks)
|
|
self.maskready = True
|
|
return latents
|
|
|
|
def hook_forward(module):
|
|
# diffusers==0.23.2
|
|
def forward(
|
|
hidden_states: torch.Tensor,
|
|
encoder_hidden_states: Optional[torch.Tensor] = None,
|
|
attention_mask: Optional[torch.Tensor] = None,
|
|
temb: Optional[torch.Tensor] = None,
|
|
scale: float = 1.0,
|
|
) -> torch.Tensor:
|
|
attn = module
|
|
xshape = hidden_states.shape
|
|
self.hw = (h, w) = split_dims(xshape[1], *orig_hw)
|
|
|
|
if revers:
|
|
nx, px = hidden_states.chunk(2)
|
|
else:
|
|
px, nx = hidden_states.chunk(2)
|
|
|
|
if equal:
|
|
hidden_states = torch.cat(
|
|
[px for i in range(regions)] + [nx for i in range(regions)],
|
|
0,
|
|
)
|
|
encoder_hidden_states = torch.cat([conds] + [unconds])
|
|
else:
|
|
hidden_states = torch.cat([px for i in range(regions)] + [nx], 0)
|
|
encoder_hidden_states = torch.cat([conds] + [unconds])
|
|
|
|
residual = hidden_states
|
|
|
|
if attn.spatial_norm is not None:
|
|
hidden_states = attn.spatial_norm(hidden_states, temb)
|
|
|
|
input_ndim = hidden_states.ndim
|
|
|
|
if input_ndim == 4:
|
|
batch_size, channel, height, width = hidden_states.shape
|
|
hidden_states = hidden_states.view(batch_size, channel, height * width).transpose(1, 2)
|
|
|
|
batch_size, sequence_length, _ = (
|
|
hidden_states.shape if encoder_hidden_states is None else encoder_hidden_states.shape
|
|
)
|
|
|
|
if attention_mask is not None:
|
|
attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length, batch_size)
|
|
attention_mask = attention_mask.view(batch_size, attn.heads, -1, attention_mask.shape[-1])
|
|
|
|
if attn.group_norm is not None:
|
|
hidden_states = attn.group_norm(hidden_states.transpose(1, 2)).transpose(1, 2)
|
|
|
|
query = attn.to_q(hidden_states)
|
|
|
|
if encoder_hidden_states is None:
|
|
encoder_hidden_states = hidden_states
|
|
elif attn.norm_cross:
|
|
encoder_hidden_states = attn.norm_encoder_hidden_states(encoder_hidden_states)
|
|
|
|
key = attn.to_k(encoder_hidden_states)
|
|
value = attn.to_v(encoder_hidden_states)
|
|
|
|
inner_dim = key.shape[-1]
|
|
head_dim = inner_dim // attn.heads
|
|
|
|
query = query.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
|
|
|
|
key = key.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
|
|
value = value.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
|
|
|
|
# the output of sdp = (batch, num_heads, seq_len, head_dim)
|
|
# TODO: add support for attn.scale when we move to Torch 2.1
|
|
hidden_states = scaled_dot_product_attention(
|
|
self,
|
|
query,
|
|
key,
|
|
value,
|
|
attn_mask=attention_mask,
|
|
dropout_p=0.0,
|
|
is_causal=False,
|
|
getattn="PRO" in mode,
|
|
)
|
|
|
|
hidden_states = hidden_states.transpose(1, 2).reshape(batch_size, -1, attn.heads * head_dim)
|
|
hidden_states = hidden_states.to(query.dtype)
|
|
|
|
# linear proj
|
|
hidden_states = attn.to_out[0](hidden_states)
|
|
# dropout
|
|
hidden_states = attn.to_out[1](hidden_states)
|
|
|
|
if input_ndim == 4:
|
|
hidden_states = hidden_states.transpose(-1, -2).reshape(batch_size, channel, height, width)
|
|
|
|
if attn.residual_connection:
|
|
hidden_states = hidden_states + residual
|
|
|
|
hidden_states = hidden_states / attn.rescale_output_factor
|
|
|
|
#### Regional Prompting Col/Row mode
|
|
if any(x in mode for x in ["COL", "ROW"]):
|
|
reshaped = hidden_states.reshape(hidden_states.size()[0], h, w, hidden_states.size()[2])
|
|
center = reshaped.shape[0] // 2
|
|
px = reshaped[0:center] if equal else reshaped[0:-batch]
|
|
nx = reshaped[center:] if equal else reshaped[-batch:]
|
|
outs = [px, nx] if equal else [px]
|
|
for out in outs:
|
|
c = 0
|
|
for i, ocell in enumerate(ocells):
|
|
for icell in icells[i]:
|
|
if "ROW" in mode:
|
|
out[
|
|
0:batch,
|
|
int(h * ocell[0]) : int(h * ocell[1]),
|
|
int(w * icell[0]) : int(w * icell[1]),
|
|
:,
|
|
] = out[
|
|
c * batch : (c + 1) * batch,
|
|
int(h * ocell[0]) : int(h * ocell[1]),
|
|
int(w * icell[0]) : int(w * icell[1]),
|
|
:,
|
|
]
|
|
else:
|
|
out[
|
|
0:batch,
|
|
int(h * icell[0]) : int(h * icell[1]),
|
|
int(w * ocell[0]) : int(w * ocell[1]),
|
|
:,
|
|
] = out[
|
|
c * batch : (c + 1) * batch,
|
|
int(h * icell[0]) : int(h * icell[1]),
|
|
int(w * ocell[0]) : int(w * ocell[1]),
|
|
:,
|
|
]
|
|
c += 1
|
|
px, nx = (px[0:batch], nx[0:batch]) if equal else (px[0:batch], nx)
|
|
hidden_states = torch.cat([nx, px], 0) if revers else torch.cat([px, nx], 0)
|
|
hidden_states = hidden_states.reshape(xshape)
|
|
|
|
#### Regional Prompting Prompt mode
|
|
elif "PRO" in mode:
|
|
px, nx = (
|
|
torch.chunk(hidden_states) if equal else hidden_states[0:-batch],
|
|
hidden_states[-batch:],
|
|
)
|
|
|
|
if (h, w) in self.attnmasks and self.maskready:
|
|
|
|
def mask(input):
|
|
out = torch.multiply(input, self.attnmasks[(h, w)])
|
|
for b in range(batch):
|
|
for r in range(1, regions):
|
|
out[b] = out[b] + out[r * batch + b]
|
|
return out
|
|
|
|
px, nx = (mask(px), mask(nx)) if equal else (mask(px), nx)
|
|
px, nx = (px[0:batch], nx[0:batch]) if equal else (px[0:batch], nx)
|
|
hidden_states = torch.cat([nx, px], 0) if revers else torch.cat([px, nx], 0)
|
|
return hidden_states
|
|
|
|
return forward
|
|
|
|
def hook_forwards(root_module: torch.nn.Module):
|
|
for name, module in root_module.named_modules():
|
|
if "attn2" in name and module.__class__.__name__ == "Attention":
|
|
module.forward = hook_forward(module)
|
|
|
|
hook_forwards(self.unet)
|
|
|
|
output = self.stable_diffusion_call(
|
|
prompt=prompt,
|
|
prompt_embeds=embs,
|
|
negative_prompt=negative_prompt,
|
|
negative_prompt_embeds=n_embs,
|
|
height=height,
|
|
width=width,
|
|
num_inference_steps=num_inference_steps,
|
|
guidance_scale=guidance_scale,
|
|
num_images_per_prompt=num_images_per_prompt,
|
|
eta=eta,
|
|
generator=generator,
|
|
latents=latents,
|
|
output_type=output_type,
|
|
return_dict=return_dict,
|
|
callback_on_step_end=pcallback,
|
|
)
|
|
|
|
if "save_mask" in rp_args:
|
|
save_mask = rp_args["save_mask"]
|
|
else:
|
|
save_mask = False
|
|
|
|
if mode == "PROMPT" and save_mask:
|
|
saveattnmaps(
|
|
self,
|
|
output,
|
|
height,
|
|
width,
|
|
thresholds,
|
|
num_inference_steps // 2,
|
|
regions,
|
|
)
|
|
|
|
return output
|
|
|
|
# copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion
|
|
def prepare_extra_step_kwargs(self, generator, eta):
|
|
# prepare extra kwargs for the scheduler step, since not all schedulers have the same signature
|
|
# eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers.
|
|
# eta corresponds to η in DDIM paper: https://huggingface.co/papers/2010.02502
|
|
# and should be between [0, 1]
|
|
|
|
accepts_eta = "eta" in set(inspect.signature(self.scheduler.step).parameters.keys())
|
|
extra_step_kwargs = {}
|
|
if accepts_eta:
|
|
extra_step_kwargs["eta"] = eta
|
|
|
|
# check if the scheduler accepts generator
|
|
accepts_generator = "generator" in set(inspect.signature(self.scheduler.step).parameters.keys())
|
|
if accepts_generator:
|
|
extra_step_kwargs["generator"] = generator
|
|
return extra_step_kwargs
|
|
|
|
# copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion
|
|
def prepare_latents(self, batch_size, num_channels_latents, height, width, dtype, device, generator, latents=None):
|
|
shape = (
|
|
batch_size,
|
|
num_channels_latents,
|
|
int(height) // self.vae_scale_factor,
|
|
int(width) // self.vae_scale_factor,
|
|
)
|
|
if isinstance(generator, list) and len(generator) != batch_size:
|
|
raise ValueError(
|
|
f"You have passed a list of generators of length {len(generator)}, but requested an effective batch"
|
|
f" size of {batch_size}. Make sure the batch size matches the length of the generators."
|
|
)
|
|
|
|
if latents is None:
|
|
latents = randn_tensor(shape, generator=generator, device=device, dtype=dtype)
|
|
else:
|
|
latents = latents.to(device)
|
|
|
|
# scale the initial noise by the standard deviation required by the scheduler
|
|
latents = latents * self.scheduler.init_noise_sigma
|
|
return latents
|
|
|
|
# copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion
|
|
def encode_prompt(
|
|
self,
|
|
prompt,
|
|
device,
|
|
num_images_per_prompt,
|
|
do_classifier_free_guidance,
|
|
negative_prompt=None,
|
|
prompt_embeds: Optional[torch.Tensor] = None,
|
|
negative_prompt_embeds: Optional[torch.Tensor] = None,
|
|
lora_scale: Optional[float] = None,
|
|
clip_skip: Optional[int] = None,
|
|
):
|
|
r"""
|
|
Encodes the prompt into text encoder hidden states.
|
|
|
|
Args:
|
|
prompt (`str` or `List[str]`, *optional*):
|
|
prompt to be encoded
|
|
device: (`torch.device`):
|
|
torch device
|
|
num_images_per_prompt (`int`):
|
|
number of images that should be generated per prompt
|
|
do_classifier_free_guidance (`bool`):
|
|
whether to use classifier free guidance or not
|
|
negative_prompt (`str` or `List[str]`, *optional*):
|
|
The prompt or prompts not to guide the image generation. If not defined, one has to pass
|
|
`negative_prompt_embeds` instead. Ignored when not using guidance (i.e., ignored if `guidance_scale` is
|
|
less than `1`).
|
|
prompt_embeds (`torch.Tensor`, *optional*):
|
|
Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not
|
|
provided, text embeddings will be generated from `prompt` input argument.
|
|
negative_prompt_embeds (`torch.Tensor`, *optional*):
|
|
Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt
|
|
weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input
|
|
argument.
|
|
lora_scale (`float`, *optional*):
|
|
A LoRA scale that will be applied to all LoRA layers of the text encoder if LoRA layers are loaded.
|
|
clip_skip (`int`, *optional*):
|
|
Number of layers to be skipped from CLIP while computing the prompt embeddings. A value of 1 means that
|
|
the output of the pre-final layer will be used for computing the prompt embeddings.
|
|
"""
|
|
# set lora scale so that monkey patched LoRA
|
|
# function of text encoder can correctly access it
|
|
if lora_scale is not None and isinstance(self, StableDiffusionLoraLoaderMixin):
|
|
self._lora_scale = lora_scale
|
|
|
|
# dynamically adjust the LoRA scale
|
|
if not USE_PEFT_BACKEND:
|
|
adjust_lora_scale_text_encoder(self.text_encoder, lora_scale)
|
|
else:
|
|
scale_lora_layers(self.text_encoder, lora_scale)
|
|
|
|
if prompt is not None and isinstance(prompt, str):
|
|
batch_size = 1
|
|
elif prompt is not None and isinstance(prompt, list):
|
|
batch_size = len(prompt)
|
|
else:
|
|
batch_size = prompt_embeds.shape[0]
|
|
|
|
if prompt_embeds is None:
|
|
# textual inversion: process multi-vector tokens if necessary
|
|
if isinstance(self, TextualInversionLoaderMixin):
|
|
prompt = self.maybe_convert_prompt(prompt, self.tokenizer)
|
|
|
|
text_inputs = self.tokenizer(
|
|
prompt,
|
|
padding="max_length",
|
|
max_length=self.tokenizer.model_max_length,
|
|
truncation=True,
|
|
return_tensors="pt",
|
|
)
|
|
text_input_ids = text_inputs.input_ids
|
|
untruncated_ids = self.tokenizer(prompt, padding="longest", return_tensors="pt").input_ids
|
|
|
|
if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and not torch.equal(
|
|
text_input_ids, untruncated_ids
|
|
):
|
|
removed_text = self.tokenizer.batch_decode(
|
|
untruncated_ids[:, self.tokenizer.model_max_length - 1 : -1]
|
|
)
|
|
logger.warning(
|
|
"The following part of your input was truncated because CLIP can only handle sequences up to"
|
|
f" {self.tokenizer.model_max_length} tokens: {removed_text}"
|
|
)
|
|
|
|
if hasattr(self.text_encoder.config, "use_attention_mask") and self.text_encoder.config.use_attention_mask:
|
|
attention_mask = text_inputs.attention_mask.to(device)
|
|
else:
|
|
attention_mask = None
|
|
|
|
if clip_skip is None:
|
|
prompt_embeds = self.text_encoder(text_input_ids.to(device), attention_mask=attention_mask)
|
|
prompt_embeds = prompt_embeds[0]
|
|
else:
|
|
prompt_embeds = self.text_encoder(
|
|
text_input_ids.to(device), attention_mask=attention_mask, output_hidden_states=True
|
|
)
|
|
# Access the `hidden_states` first, that contains a tuple of
|
|
# all the hidden states from the encoder layers. Then index into
|
|
# the tuple to access the hidden states from the desired layer.
|
|
prompt_embeds = prompt_embeds[-1][-(clip_skip + 1)]
|
|
# We also need to apply the final LayerNorm here to not mess with the
|
|
# representations. The `last_hidden_states` that we typically use for
|
|
# obtaining the final prompt representations passes through the LayerNorm
|
|
# layer.
|
|
prompt_embeds = self.text_encoder.text_model.final_layer_norm(prompt_embeds)
|
|
|
|
if self.text_encoder is not None:
|
|
prompt_embeds_dtype = self.text_encoder.dtype
|
|
elif self.unet is not None:
|
|
prompt_embeds_dtype = self.unet.dtype
|
|
else:
|
|
prompt_embeds_dtype = prompt_embeds.dtype
|
|
|
|
prompt_embeds = prompt_embeds.to(dtype=prompt_embeds_dtype, device=device)
|
|
|
|
bs_embed, seq_len, _ = prompt_embeds.shape
|
|
# duplicate text embeddings for each generation per prompt, using mps friendly method
|
|
prompt_embeds = prompt_embeds.repeat(1, num_images_per_prompt, 1)
|
|
prompt_embeds = prompt_embeds.view(bs_embed * num_images_per_prompt, seq_len, -1)
|
|
|
|
# get unconditional embeddings for classifier free guidance
|
|
if do_classifier_free_guidance and negative_prompt_embeds is None:
|
|
uncond_tokens: List[str]
|
|
if negative_prompt is None:
|
|
uncond_tokens = [""] * batch_size
|
|
elif prompt is not None and type(prompt) is not type(negative_prompt):
|
|
raise TypeError(
|
|
f"`negative_prompt` should be the same type to `prompt`, but got {type(negative_prompt)} !="
|
|
f" {type(prompt)}."
|
|
)
|
|
elif isinstance(negative_prompt, str):
|
|
uncond_tokens = [negative_prompt]
|
|
elif batch_size != len(negative_prompt):
|
|
raise ValueError(
|
|
f"`negative_prompt`: {negative_prompt} has batch size {len(negative_prompt)}, but `prompt`:"
|
|
f" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches"
|
|
" the batch size of `prompt`."
|
|
)
|
|
else:
|
|
uncond_tokens = negative_prompt
|
|
|
|
# textual inversion: process multi-vector tokens if necessary
|
|
if isinstance(self, TextualInversionLoaderMixin):
|
|
uncond_tokens = self.maybe_convert_prompt(uncond_tokens, self.tokenizer)
|
|
|
|
max_length = prompt_embeds.shape[1]
|
|
uncond_input = self.tokenizer(
|
|
uncond_tokens,
|
|
padding="max_length",
|
|
max_length=max_length,
|
|
truncation=True,
|
|
return_tensors="pt",
|
|
)
|
|
|
|
if hasattr(self.text_encoder.config, "use_attention_mask") and self.text_encoder.config.use_attention_mask:
|
|
attention_mask = uncond_input.attention_mask.to(device)
|
|
else:
|
|
attention_mask = None
|
|
|
|
negative_prompt_embeds = self.text_encoder(
|
|
uncond_input.input_ids.to(device),
|
|
attention_mask=attention_mask,
|
|
)
|
|
negative_prompt_embeds = negative_prompt_embeds[0]
|
|
|
|
if do_classifier_free_guidance:
|
|
# duplicate unconditional embeddings for each generation per prompt, using mps friendly method
|
|
seq_len = negative_prompt_embeds.shape[1]
|
|
|
|
negative_prompt_embeds = negative_prompt_embeds.to(dtype=prompt_embeds_dtype, device=device)
|
|
|
|
negative_prompt_embeds = negative_prompt_embeds.repeat(1, num_images_per_prompt, 1)
|
|
negative_prompt_embeds = negative_prompt_embeds.view(batch_size * num_images_per_prompt, seq_len, -1)
|
|
|
|
if self.text_encoder is not None:
|
|
if isinstance(self, StableDiffusionLoraLoaderMixin) and USE_PEFT_BACKEND:
|
|
# Retrieve the original scale by scaling back the LoRA layers
|
|
unscale_lora_layers(self.text_encoder, lora_scale)
|
|
|
|
return prompt_embeds, negative_prompt_embeds
|
|
|
|
# copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion
|
|
def check_inputs(
|
|
self,
|
|
prompt,
|
|
height,
|
|
width,
|
|
callback_steps,
|
|
negative_prompt=None,
|
|
prompt_embeds=None,
|
|
negative_prompt_embeds=None,
|
|
ip_adapter_image=None,
|
|
ip_adapter_image_embeds=None,
|
|
callback_on_step_end_tensor_inputs=None,
|
|
):
|
|
if height % 8 != 0 or width % 8 != 0:
|
|
raise ValueError(f"`height` and `width` have to be divisible by 8 but are {height} and {width}.")
|
|
|
|
if callback_steps is not None and (not isinstance(callback_steps, int) or callback_steps <= 0):
|
|
raise ValueError(
|
|
f"`callback_steps` has to be a positive integer but is {callback_steps} of type"
|
|
f" {type(callback_steps)}."
|
|
)
|
|
if callback_on_step_end_tensor_inputs is not None and not all(
|
|
k in self._callback_tensor_inputs for k in callback_on_step_end_tensor_inputs
|
|
):
|
|
raise ValueError(
|
|
f"`callback_on_step_end_tensor_inputs` has to be in {self._callback_tensor_inputs}, but found {[k for k in callback_on_step_end_tensor_inputs if k not in self._callback_tensor_inputs]}"
|
|
)
|
|
|
|
if prompt is not None and prompt_embeds is not None:
|
|
raise ValueError(
|
|
f"Cannot forward both `prompt`: {prompt} and `prompt_embeds`: {prompt_embeds}. Please make sure to"
|
|
" only forward one of the two."
|
|
)
|
|
elif prompt is None and prompt_embeds is None:
|
|
raise ValueError(
|
|
"Provide either `prompt` or `prompt_embeds`. Cannot leave both `prompt` and `prompt_embeds` undefined."
|
|
)
|
|
elif prompt is not None and (not isinstance(prompt, str) and not isinstance(prompt, list)):
|
|
raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(prompt)}")
|
|
|
|
if negative_prompt is not None and negative_prompt_embeds is not None:
|
|
raise ValueError(
|
|
f"Cannot forward both `negative_prompt`: {negative_prompt} and `negative_prompt_embeds`:"
|
|
f" {negative_prompt_embeds}. Please make sure to only forward one of the two."
|
|
)
|
|
|
|
if prompt_embeds is not None and negative_prompt_embeds is not None:
|
|
if prompt_embeds.shape != negative_prompt_embeds.shape:
|
|
raise ValueError(
|
|
"`prompt_embeds` and `negative_prompt_embeds` must have the same shape when passed directly, but"
|
|
f" got: `prompt_embeds` {prompt_embeds.shape} != `negative_prompt_embeds`"
|
|
f" {negative_prompt_embeds.shape}."
|
|
)
|
|
|
|
if ip_adapter_image is not None and ip_adapter_image_embeds is not None:
|
|
raise ValueError(
|
|
"Provide either `ip_adapter_image` or `ip_adapter_image_embeds`. Cannot leave both `ip_adapter_image` and `ip_adapter_image_embeds` defined."
|
|
)
|
|
|
|
if ip_adapter_image_embeds is not None:
|
|
if not isinstance(ip_adapter_image_embeds, list):
|
|
raise ValueError(
|
|
f"`ip_adapter_image_embeds` has to be of type `list` but is {type(ip_adapter_image_embeds)}"
|
|
)
|
|
elif ip_adapter_image_embeds[0].ndim not in [3, 4]:
|
|
raise ValueError(
|
|
f"`ip_adapter_image_embeds` has to be a list of 3D or 4D tensors but is {ip_adapter_image_embeds[0].ndim}D"
|
|
)
|
|
|
|
# copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion
|
|
@torch.no_grad()
|
|
def stable_diffusion_call(
|
|
self,
|
|
prompt: Union[str, List[str]] = None,
|
|
height: Optional[int] = None,
|
|
width: Optional[int] = None,
|
|
num_inference_steps: int = 50,
|
|
timesteps: List[int] = None,
|
|
sigmas: List[float] = None,
|
|
guidance_scale: float = 7.5,
|
|
negative_prompt: Optional[Union[str, List[str]]] = None,
|
|
num_images_per_prompt: Optional[int] = 1,
|
|
eta: float = 0.0,
|
|
generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
|
|
latents: Optional[torch.Tensor] = None,
|
|
prompt_embeds: Optional[torch.Tensor] = None,
|
|
negative_prompt_embeds: Optional[torch.Tensor] = None,
|
|
ip_adapter_image: Optional[PipelineImageInput] = None,
|
|
ip_adapter_image_embeds: Optional[List[torch.Tensor]] = None,
|
|
output_type: Optional[str] = "pil",
|
|
return_dict: bool = True,
|
|
cross_attention_kwargs: Optional[Dict[str, Any]] = None,
|
|
guidance_rescale: float = 0.0,
|
|
clip_skip: Optional[int] = None,
|
|
callback_on_step_end: Optional[
|
|
Union[Callable[[int, int, Dict], None], PipelineCallback, MultiPipelineCallbacks]
|
|
] = None,
|
|
callback_on_step_end_tensor_inputs: List[str] = ["latents"],
|
|
**kwargs,
|
|
):
|
|
r"""
|
|
The call function to the pipeline for generation.
|
|
|
|
Args:
|
|
prompt (`str` or `List[str]`, *optional*):
|
|
The prompt or prompts to guide image generation. If not defined, you need to pass `prompt_embeds`.
|
|
height (`int`, *optional*, defaults to `self.unet.config.sample_size * self.vae_scale_factor`):
|
|
The height in pixels of the generated image.
|
|
width (`int`, *optional*, defaults to `self.unet.config.sample_size * self.vae_scale_factor`):
|
|
The width in pixels of the generated image.
|
|
num_inference_steps (`int`, *optional*, defaults to 50):
|
|
The number of denoising steps. More denoising steps usually lead to a higher quality image at the
|
|
expense of slower inference.
|
|
timesteps (`List[int]`, *optional*):
|
|
Custom timesteps to use for the denoising process with schedulers which support a `timesteps` argument
|
|
in their `set_timesteps` method. If not defined, the default behavior when `num_inference_steps` is
|
|
passed will be used. Must be in descending order.
|
|
sigmas (`List[float]`, *optional*):
|
|
Custom sigmas to use for the denoising process with schedulers which support a `sigmas` argument in
|
|
their `set_timesteps` method. If not defined, the default behavior when `num_inference_steps` is passed
|
|
will be used.
|
|
guidance_scale (`float`, *optional*, defaults to 7.5):
|
|
A higher guidance scale value encourages the model to generate images closely linked to the text
|
|
`prompt` at the expense of lower image quality. Guidance scale is enabled when `guidance_scale > 1`.
|
|
negative_prompt (`str` or `List[str]`, *optional*):
|
|
The prompt or prompts to guide what to not include in image generation. If not defined, you need to
|
|
pass `negative_prompt_embeds` instead. Ignored when not using guidance (`guidance_scale < 1`).
|
|
num_images_per_prompt (`int`, *optional*, defaults to 1):
|
|
The number of images to generate per prompt.
|
|
eta (`float`, *optional*, defaults to 0.0):
|
|
Corresponds to parameter eta (η) from the [DDIM](https://huggingface.co/papers/2010.02502) paper. Only applies
|
|
to the [`~schedulers.DDIMScheduler`], and is ignored in other schedulers.
|
|
generator (`torch.Generator` or `List[torch.Generator]`, *optional*):
|
|
A [`torch.Generator`](https://pytorch.org/docs/stable/generated/torch.Generator.html) to make
|
|
generation deterministic.
|
|
latents (`torch.Tensor`, *optional*):
|
|
Pre-generated noisy latents sampled from a Gaussian distribution, to be used as inputs for image
|
|
generation. Can be used to tweak the same generation with different prompts. If not provided, a latents
|
|
tensor is generated by sampling using the supplied random `generator`.
|
|
prompt_embeds (`torch.Tensor`, *optional*):
|
|
Pre-generated text embeddings. Can be used to easily tweak text inputs (prompt weighting). If not
|
|
provided, text embeddings are generated from the `prompt` input argument.
|
|
negative_prompt_embeds (`torch.Tensor`, *optional*):
|
|
Pre-generated negative text embeddings. Can be used to easily tweak text inputs (prompt weighting). If
|
|
not provided, `negative_prompt_embeds` are generated from the `negative_prompt` input argument.
|
|
ip_adapter_image: (`PipelineImageInput`, *optional*): Optional image input to work with IP Adapters.
|
|
ip_adapter_image_embeds (`List[torch.Tensor]`, *optional*):
|
|
Pre-generated image embeddings for IP-Adapter. It should be a list of length same as number of
|
|
IP-adapters. Each element should be a tensor of shape `(batch_size, num_images, emb_dim)`. It should
|
|
contain the negative image embedding if `do_classifier_free_guidance` is set to `True`. If not
|
|
provided, embeddings are computed from the `ip_adapter_image` input argument.
|
|
output_type (`str`, *optional*, defaults to `"pil"`):
|
|
The output format of the generated image. Choose between `PIL.Image` or `np.array`.
|
|
return_dict (`bool`, *optional*, defaults to `True`):
|
|
Whether or not to return a [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] instead of a
|
|
plain tuple.
|
|
cross_attention_kwargs (`dict`, *optional*):
|
|
A kwargs dictionary that if specified is passed along to the [`AttentionProcessor`] as defined in
|
|
[`self.processor`](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py).
|
|
guidance_rescale (`float`, *optional*, defaults to 0.0):
|
|
Guidance rescale factor from [Common Diffusion Noise Schedules and Sample Steps are
|
|
Flawed](https://huggingface.co/papers/2305.08891). Guidance rescale factor should fix overexposure when
|
|
using zero terminal SNR.
|
|
clip_skip (`int`, *optional*):
|
|
Number of layers to be skipped from CLIP while computing the prompt embeddings. A value of 1 means that
|
|
the output of the pre-final layer will be used for computing the prompt embeddings.
|
|
callback_on_step_end (`Callable`, `PipelineCallback`, `MultiPipelineCallbacks`, *optional*):
|
|
A function or a subclass of `PipelineCallback` or `MultiPipelineCallbacks` that is called at the end of
|
|
each denoising step during the inference. with the following arguments: `callback_on_step_end(self:
|
|
DiffusionPipeline, step: int, timestep: int, callback_kwargs: Dict)`. `callback_kwargs` will include a
|
|
list of all tensors as specified by `callback_on_step_end_tensor_inputs`.
|
|
callback_on_step_end_tensor_inputs (`List`, *optional*):
|
|
The list of tensor inputs for the `callback_on_step_end` function. The tensors specified in the list
|
|
will be passed as `callback_kwargs` argument. You will only be able to include variables listed in the
|
|
`._callback_tensor_inputs` attribute of your pipeline class.
|
|
|
|
Examples:
|
|
|
|
Returns:
|
|
[`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] or `tuple`:
|
|
If `return_dict` is `True`, [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] is returned,
|
|
otherwise a `tuple` is returned where the first element is a list with the generated images and the
|
|
second element is a list of `bool`s indicating whether the corresponding generated image contains
|
|
"not-safe-for-work" (nsfw) content.
|
|
"""
|
|
|
|
callback = kwargs.pop("callback", None)
|
|
callback_steps = kwargs.pop("callback_steps", None)
|
|
self.model_cpu_offload_seq = "text_encoder->image_encoder->unet->vae"
|
|
self._optional_components = ["safety_checker", "feature_extractor", "image_encoder"]
|
|
self._exclude_from_cpu_offload = ["safety_checker"]
|
|
self._callback_tensor_inputs = ["latents", "prompt_embeds", "negative_prompt_embeds"]
|
|
|
|
if callback is not None:
|
|
deprecate(
|
|
"callback",
|
|
"1.0.0",
|
|
"Passing `callback` as an input argument to `__call__` is deprecated, consider using `callback_on_step_end`",
|
|
)
|
|
if callback_steps is not None:
|
|
deprecate(
|
|
"callback_steps",
|
|
"1.0.0",
|
|
"Passing `callback_steps` as an input argument to `__call__` is deprecated, consider using `callback_on_step_end`",
|
|
)
|
|
|
|
if isinstance(callback_on_step_end, (PipelineCallback, MultiPipelineCallbacks)):
|
|
callback_on_step_end_tensor_inputs = callback_on_step_end.tensor_inputs
|
|
|
|
# 0. Default height and width to unet
|
|
if not height or not width:
|
|
height = (
|
|
self.unet.config.sample_size
|
|
if self._is_unet_config_sample_size_int
|
|
else self.unet.config.sample_size[0]
|
|
)
|
|
width = (
|
|
self.unet.config.sample_size
|
|
if self._is_unet_config_sample_size_int
|
|
else self.unet.config.sample_size[1]
|
|
)
|
|
height, width = height * self.vae_scale_factor, width * self.vae_scale_factor
|
|
# to deal with lora scaling and other possible forward hooks
|
|
|
|
# 1. Check inputs. Raise error if not correct
|
|
self.check_inputs(
|
|
prompt,
|
|
height,
|
|
width,
|
|
callback_steps,
|
|
negative_prompt,
|
|
prompt_embeds,
|
|
negative_prompt_embeds,
|
|
ip_adapter_image,
|
|
ip_adapter_image_embeds,
|
|
callback_on_step_end_tensor_inputs,
|
|
)
|
|
|
|
self._guidance_scale = guidance_scale
|
|
self._guidance_rescale = guidance_rescale
|
|
self._clip_skip = clip_skip
|
|
self._cross_attention_kwargs = cross_attention_kwargs
|
|
self._interrupt = False
|
|
|
|
# 2. Define call parameters
|
|
if prompt is not None and isinstance(prompt, str):
|
|
batch_size = 1
|
|
elif prompt is not None and isinstance(prompt, list):
|
|
batch_size = len(prompt)
|
|
else:
|
|
batch_size = prompt_embeds.shape[0]
|
|
|
|
device = self._execution_device
|
|
|
|
# 3. Encode input prompt
|
|
lora_scale = (
|
|
self.cross_attention_kwargs.get("scale", None) if self.cross_attention_kwargs is not None else None
|
|
)
|
|
|
|
prompt_embeds, negative_prompt_embeds = self.encode_prompt(
|
|
prompt,
|
|
device,
|
|
num_images_per_prompt,
|
|
self.do_classifier_free_guidance,
|
|
negative_prompt,
|
|
prompt_embeds=prompt_embeds,
|
|
negative_prompt_embeds=negative_prompt_embeds,
|
|
lora_scale=lora_scale,
|
|
clip_skip=self.clip_skip,
|
|
)
|
|
|
|
# For classifier free guidance, we need to do two forward passes.
|
|
# Here we concatenate the unconditional and text embeddings into a single batch
|
|
# to avoid doing two forward passes
|
|
if self.do_classifier_free_guidance:
|
|
prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds])
|
|
|
|
if ip_adapter_image is not None or ip_adapter_image_embeds is not None:
|
|
image_embeds = self.prepare_ip_adapter_image_embeds(
|
|
ip_adapter_image,
|
|
ip_adapter_image_embeds,
|
|
device,
|
|
batch_size * num_images_per_prompt,
|
|
self.do_classifier_free_guidance,
|
|
)
|
|
|
|
# 4. Prepare timesteps
|
|
timesteps, num_inference_steps = retrieve_timesteps(
|
|
self.scheduler, num_inference_steps, device, timesteps, sigmas
|
|
)
|
|
|
|
# 5. Prepare latent variables
|
|
num_channels_latents = self.unet.config.in_channels
|
|
latents = self.prepare_latents(
|
|
batch_size * num_images_per_prompt,
|
|
num_channels_latents,
|
|
height,
|
|
width,
|
|
prompt_embeds.dtype,
|
|
device,
|
|
generator,
|
|
latents,
|
|
)
|
|
|
|
# 6. Prepare extra step kwargs. TODO: Logic should ideally just be moved out of the pipeline
|
|
extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta)
|
|
|
|
# 6.1 Add image embeds for IP-Adapter
|
|
added_cond_kwargs = (
|
|
{"image_embeds": image_embeds}
|
|
if (ip_adapter_image is not None or ip_adapter_image_embeds is not None)
|
|
else None
|
|
)
|
|
|
|
# 6.2 Optionally get Guidance Scale Embedding
|
|
timestep_cond = None
|
|
if self.unet.config.time_cond_proj_dim is not None:
|
|
guidance_scale_tensor = torch.tensor(self.guidance_scale - 1).repeat(batch_size * num_images_per_prompt)
|
|
timestep_cond = self.get_guidance_scale_embedding(
|
|
guidance_scale_tensor, embedding_dim=self.unet.config.time_cond_proj_dim
|
|
).to(device=device, dtype=latents.dtype)
|
|
|
|
# 7. Denoising loop
|
|
num_warmup_steps = len(timesteps) - num_inference_steps * self.scheduler.order
|
|
self._num_timesteps = len(timesteps)
|
|
with self.progress_bar(total=num_inference_steps) as progress_bar:
|
|
for i, t in enumerate(timesteps):
|
|
if self.interrupt:
|
|
continue
|
|
|
|
# expand the latents if we are doing classifier free guidance
|
|
latent_model_input = torch.cat([latents] * 2) if self.do_classifier_free_guidance else latents
|
|
latent_model_input = self.scheduler.scale_model_input(latent_model_input, t)
|
|
|
|
# predict the noise residual
|
|
noise_pred = self.unet(
|
|
latent_model_input,
|
|
t,
|
|
encoder_hidden_states=prompt_embeds,
|
|
timestep_cond=timestep_cond,
|
|
cross_attention_kwargs=self.cross_attention_kwargs,
|
|
added_cond_kwargs=added_cond_kwargs,
|
|
return_dict=False,
|
|
)[0]
|
|
|
|
# perform guidance
|
|
if self.do_classifier_free_guidance:
|
|
noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
|
|
noise_pred = noise_pred_uncond + self.guidance_scale * (noise_pred_text - noise_pred_uncond)
|
|
|
|
if self.do_classifier_free_guidance and self.guidance_rescale > 0.0:
|
|
# Based on 3.4. in https://huggingface.co/papers/2305.08891
|
|
noise_pred = rescale_noise_cfg(noise_pred, noise_pred_text, guidance_rescale=self.guidance_rescale)
|
|
|
|
# compute the previous noisy sample x_t -> x_t-1
|
|
latents = self.scheduler.step(noise_pred, t, latents, **extra_step_kwargs, return_dict=False)[0]
|
|
|
|
if callback_on_step_end is not None:
|
|
callback_kwargs = {}
|
|
for k in callback_on_step_end_tensor_inputs:
|
|
callback_kwargs[k] = locals()[k]
|
|
callback_outputs = callback_on_step_end(self, i, t, callback_kwargs)
|
|
|
|
latents = callback_outputs.pop("latents", latents)
|
|
prompt_embeds = callback_outputs.pop("prompt_embeds", prompt_embeds)
|
|
negative_prompt_embeds = callback_outputs.pop("negative_prompt_embeds", negative_prompt_embeds)
|
|
|
|
# call the callback, if provided
|
|
if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0):
|
|
progress_bar.update()
|
|
if callback is not None and i % callback_steps == 0:
|
|
step_idx = i // getattr(self.scheduler, "order", 1)
|
|
callback(step_idx, t, latents)
|
|
|
|
if XLA_AVAILABLE:
|
|
xm.mark_step()
|
|
|
|
if not output_type == "latent":
|
|
image = self.vae.decode(latents / self.vae.config.scaling_factor, return_dict=False, generator=generator)[
|
|
0
|
|
]
|
|
image, has_nsfw_concept = self.run_safety_checker(image, device, prompt_embeds.dtype)
|
|
else:
|
|
image = latents
|
|
has_nsfw_concept = None
|
|
|
|
if has_nsfw_concept is None:
|
|
do_denormalize = [True] * image.shape[0]
|
|
else:
|
|
do_denormalize = [not has_nsfw for has_nsfw in has_nsfw_concept]
|
|
image = self.image_processor.postprocess(image, output_type=output_type, do_denormalize=do_denormalize)
|
|
|
|
# Offload all models
|
|
self.maybe_free_model_hooks()
|
|
|
|
if not return_dict:
|
|
return (image, has_nsfw_concept)
|
|
|
|
return StableDiffusionPipelineOutput(images=image, nsfw_content_detected=has_nsfw_concept)
|
|
|
|
# copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion
|
|
def _encode_prompt(
|
|
self,
|
|
prompt,
|
|
device,
|
|
num_images_per_prompt,
|
|
do_classifier_free_guidance,
|
|
negative_prompt=None,
|
|
prompt_embeds: Optional[torch.Tensor] = None,
|
|
negative_prompt_embeds: Optional[torch.Tensor] = None,
|
|
lora_scale: Optional[float] = None,
|
|
**kwargs,
|
|
):
|
|
r"""Encodes the prompt into text encoder hidden states."""
|
|
batch_size = len(prompt) if isinstance(prompt, list) else 1
|
|
|
|
# get prompt text embeddings
|
|
text_inputs = self.tokenizer(
|
|
prompt,
|
|
padding="max_length",
|
|
max_length=self.tokenizer.model_max_length,
|
|
truncation=True,
|
|
return_tensors="pt",
|
|
)
|
|
text_input_ids = text_inputs.input_ids
|
|
untruncated_ids = self.tokenizer(prompt, padding="longest", return_tensors="pt").input_ids
|
|
|
|
if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and not torch.equal(text_input_ids, untruncated_ids):
|
|
removed_text = self.tokenizer.batch_decode(untruncated_ids[:, self.tokenizer.model_max_length - 1 : -1])
|
|
logger.warning(
|
|
"The following part of your input was truncated because CLIP can only handle sequences up to"
|
|
f" {self.tokenizer.model_max_length} tokens: {removed_text}"
|
|
)
|
|
|
|
if hasattr(self.text_encoder.config, "use_attention_mask") and self.text_encoder.config.use_attention_mask:
|
|
attention_mask = text_inputs.attention_mask.to(device)
|
|
else:
|
|
attention_mask = None
|
|
|
|
if isinstance(self, StableDiffusionLoraLoaderMixin) and USE_PEFT_BACKEND:
|
|
# cast text_encoder.dtype to prevent overflow when using bf16
|
|
text_input_ids = text_input_ids.to(device=device, dtype=self.text_encoder.dtype)
|
|
prompt_embeds = self.text_encoder(
|
|
text_input_ids,
|
|
attention_mask=attention_mask,
|
|
)
|
|
prompt_embeds = prompt_embeds[0]
|
|
else:
|
|
text_encoder_lora_scale = None
|
|
if lora_scale is not None and isinstance(self, StableDiffusionLoraLoaderMixin):
|
|
text_encoder_lora_scale = lora_scale
|
|
if text_encoder_lora_scale is not None and isinstance(self, StableDiffusionLoraLoaderMixin):
|
|
# dynamically adjust the LoRA scale
|
|
adjust_lora_scale_text_encoder(self.text_encoder, lora_scale)
|
|
|
|
prompt_embeds = self.text_encoder(
|
|
text_input_ids.to(device),
|
|
attention_mask=attention_mask,
|
|
)
|
|
prompt_embeds = prompt_embeds[0]
|
|
|
|
# duplicate text embeddings for each generation per prompt
|
|
bs_embed, seq_len, _ = prompt_embeds.shape
|
|
prompt_embeds = prompt_embeds.repeat(1, num_images_per_prompt, 1)
|
|
prompt_embeds = prompt_embeds.view(bs_embed * num_images_per_prompt, seq_len, -1)
|
|
|
|
# get unconditional embeddings for classifier free guidance
|
|
if do_classifier_free_guidance and negative_prompt_embeds is None:
|
|
uncond_tokens: List[str]
|
|
if negative_prompt is None:
|
|
uncond_tokens = [""]
|
|
elif type(prompt) is not type(negative_prompt):
|
|
raise TypeError(
|
|
f"`negative_prompt` should be the same type to `prompt`, but got {type(negative_prompt)} !="
|
|
f" {type(prompt)}."
|
|
)
|
|
elif isinstance(negative_prompt, str):
|
|
uncond_tokens = [negative_prompt]
|
|
elif batch_size != len(negative_prompt):
|
|
raise ValueError(
|
|
f"`negative_prompt`: {negative_prompt} has batch size {len(negative_prompt)}, but `prompt`:"
|
|
f" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches"
|
|
" the batch size of `prompt`."
|
|
)
|
|
else:
|
|
uncond_tokens = negative_prompt
|
|
|
|
# textual inversion: process multi-vector tokens if necessary
|
|
if isinstance(self, TextualInversionLoaderMixin):
|
|
uncond_tokens = self.maybe_convert_prompt(uncond_tokens, self.tokenizer)
|
|
|
|
max_length = prompt_embeds.shape[1]
|
|
uncond_input = self.tokenizer(
|
|
uncond_tokens,
|
|
padding="max_length",
|
|
max_length=max_length,
|
|
truncation=True,
|
|
return_tensors="pt",
|
|
)
|
|
|
|
if hasattr(self.text_encoder.config, "use_attention_mask") and self.text_encoder.config.use_attention_mask:
|
|
attention_mask = uncond_input.attention_mask.to(device)
|
|
else:
|
|
attention_mask = None
|
|
|
|
negative_prompt_embeds = self.text_encoder(
|
|
uncond_input.input_ids.to(device),
|
|
attention_mask=attention_mask,
|
|
)
|
|
negative_prompt_embeds = negative_prompt_embeds[0]
|
|
|
|
if do_classifier_free_guidance:
|
|
# duplicate unconditional embeddings for each generation per prompt
|
|
seq_len = negative_prompt_embeds.shape[1]
|
|
|
|
negative_prompt_embeds = negative_prompt_embeds.repeat(1, num_images_per_prompt, 1)
|
|
negative_prompt_embeds = negative_prompt_embeds.view(batch_size * num_images_per_prompt, seq_len, -1)
|
|
|
|
if isinstance(self, StableDiffusionLoraLoaderMixin) and USE_PEFT_BACKEND:
|
|
# Unscale LoRA weights to avoid overfitting. This is a hack
|
|
unscale_lora_layers(self.text_encoder, lora_scale)
|
|
|
|
return prompt_embeds, negative_prompt_embeds
|
|
|
|
def encode_image(self, image, device, num_images_per_prompt, output_hidden_states=None):
|
|
"""Encodes the image into image encoder hidden states."""
|
|
dtype = next(self.image_encoder.parameters()).dtype
|
|
|
|
if not isinstance(image, torch.Tensor):
|
|
image = self.feature_extractor(image, return_tensors="pt").pixel_values
|
|
|
|
image = image.to(device=device, dtype=dtype)
|
|
if output_hidden_states:
|
|
image_enc_hidden_states = self.image_encoder(image, output_hidden_states=True).hidden_states[-2]
|
|
image_enc_hidden_states = image_enc_hidden_states.repeat_interleave(num_images_per_prompt, dim=0)
|
|
uncond_image_enc_hidden_states = self.image_encoder(
|
|
torch.zeros_like(image), output_hidden_states=True
|
|
).hidden_states[-2]
|
|
uncond_image_enc_hidden_states = uncond_image_enc_hidden_states.repeat_interleave(
|
|
num_images_per_prompt, dim=0
|
|
)
|
|
return image_enc_hidden_states, uncond_image_enc_hidden_states
|
|
else:
|
|
image_embeds = self.image_encoder(image).image_embeds
|
|
image_embeds = image_embeds.repeat_interleave(num_images_per_prompt, dim=0)
|
|
uncond_image_embeds = torch.zeros_like(image_embeds)
|
|
|
|
return image_embeds, uncond_image_embeds
|
|
|
|
def prepare_ip_adapter_image_embeds(
|
|
self, ip_adapter_image, ip_adapter_image_embeds, device, num_images_per_prompt, do_classifier_free_guidance
|
|
):
|
|
"""Prepares and processes IP-Adapter image embeddings."""
|
|
image_embeds = []
|
|
if do_classifier_free_guidance:
|
|
negative_image_embeds = []
|
|
if ip_adapter_image_embeds is None:
|
|
for image in ip_adapter_image:
|
|
if not isinstance(image, torch.Tensor):
|
|
image = self.image_processor.preprocess(image)
|
|
image = image.to(device=device)
|
|
if len(image.shape) == 3:
|
|
image = image.unsqueeze(0)
|
|
image_emb, neg_image_emb = self.encode_image(image, device, num_images_per_prompt, True)
|
|
image_embeds.append(image_emb)
|
|
if do_classifier_free_guidance:
|
|
negative_image_embeds.append(neg_image_emb)
|
|
|
|
if len(image_embeds) == 1:
|
|
image_embeds = image_embeds[0]
|
|
if do_classifier_free_guidance:
|
|
negative_image_embeds = negative_image_embeds[0]
|
|
else:
|
|
image_embeds = torch.cat(image_embeds, dim=0)
|
|
if do_classifier_free_guidance:
|
|
negative_image_embeds = torch.cat(negative_image_embeds, dim=0)
|
|
else:
|
|
repeat_dim = 2 if do_classifier_free_guidance else 1
|
|
image_embeds = ip_adapter_image_embeds.repeat_interleave(repeat_dim, dim=0)
|
|
if do_classifier_free_guidance:
|
|
negative_image_embeds = torch.zeros_like(image_embeds)
|
|
|
|
if do_classifier_free_guidance:
|
|
image_embeds = torch.cat([negative_image_embeds, image_embeds])
|
|
|
|
return image_embeds
|
|
|
|
def run_safety_checker(self, image, device, dtype):
|
|
"""Runs the safety checker on the generated image."""
|
|
if self.safety_checker is None:
|
|
has_nsfw_concept = None
|
|
return image, has_nsfw_concept
|
|
|
|
if isinstance(self.safety_checker, StableDiffusionSafetyChecker):
|
|
safety_checker_input = self.feature_extractor(self.numpy_to_pil(image), return_tensors="pt").to(device)
|
|
image, has_nsfw_concept = self.safety_checker(
|
|
images=image,
|
|
clip_input=safety_checker_input.pixel_values.to(dtype),
|
|
)
|
|
else:
|
|
images_np = self.numpy_to_pil(image)
|
|
safety_checker_input = self.safety_checker.feature_extractor(images_np, return_tensors="pt").to(device)
|
|
has_nsfw_concept = self.safety_checker(
|
|
images=image,
|
|
clip_input=safety_checker_input.pixel_values.to(dtype),
|
|
)[1]
|
|
|
|
return image, has_nsfw_concept
|
|
|
|
# copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion
|
|
def decode_latents(self, latents):
|
|
"""Decodes the latents to images."""
|
|
latents = 1 / self.vae.config.scaling_factor * latents
|
|
image = self.vae.decode(latents, return_dict=False)[0]
|
|
image = (image / 2 + 0.5).clamp(0, 1)
|
|
# we always cast to float32 as this does not cause significant overhead and is compatible with bfloat16
|
|
image = image.cpu().permute(0, 2, 3, 1).float().numpy()
|
|
return image
|
|
|
|
@property
|
|
def guidance_scale(self):
|
|
return self._guidance_scale
|
|
|
|
@property
|
|
def guidance_rescale(self):
|
|
return self._guidance_rescale
|
|
|
|
# copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion
|
|
def get_guidance_scale_embedding(
|
|
self, w: torch.Tensor, embedding_dim: int = 512, dtype: torch.dtype = torch.float32
|
|
):
|
|
"""Gets the guidance scale embedding for classifier free guidance conditioning.
|
|
See https://github.com/google-research/vdm/blob/dc27b98a554f65cdc654b800da5aa1846545d41b/model_vdm.py#L298
|
|
|
|
Args:
|
|
w (`torch.Tensor`):
|
|
The guidance scale tensor used for classifier free guidance conditioning.
|
|
embedding_dim (`int`, defaults to 512):
|
|
The dimensionality of the guidance scale embedding.
|
|
dtype (`torch.dtype`, defaults to torch.float32):
|
|
The dtype of the embedding.
|
|
|
|
Returns:
|
|
`torch.Tensor`: Embedding vectors with shape `(len(w), embedding_dim)`.
|
|
"""
|
|
assert len(w.shape) == 1
|
|
w = w * 1000.0
|
|
|
|
half_dim = embedding_dim // 2
|
|
emb = torch.log(torch.tensor(10000.0)) / (half_dim - 1)
|
|
emb = torch.exp(torch.arange(half_dim, dtype=dtype) * -emb)
|
|
emb = w.to(dtype)[:, None] * emb[None, :]
|
|
emb = torch.cat([torch.sin(emb), torch.cos(emb)], dim=1)
|
|
if embedding_dim % 2 == 1: # zero pad
|
|
emb = torch.nn.functional.pad(emb, (0, 1))
|
|
assert emb.shape == (w.shape[0], embedding_dim)
|
|
return emb
|
|
|
|
@property
|
|
def clip_skip(self):
|
|
return self._clip_skip
|
|
|
|
@property
|
|
def num_timesteps(self):
|
|
return self._num_timesteps
|
|
|
|
@property
|
|
def interrupt(self):
|
|
return self._interrupt
|
|
|
|
@property
|
|
def cross_attention_kwargs(self):
|
|
return self._cross_attention_kwargs
|
|
|
|
@property
|
|
def do_classifier_free_guidance(self):
|
|
return self._guidance_scale > 1 and self.unet.config.time_cond_proj_dim is None
|
|
|
|
|
|
### Make prompt list for each regions
|
|
def promptsmaker(prompts, batch):
|
|
out_p = []
|
|
plen = len(prompts)
|
|
for prompt in prompts:
|
|
add = ""
|
|
if KCOMM in prompt:
|
|
add, prompt = prompt.split(KCOMM)
|
|
add = add.strip() + " "
|
|
prompts = [p.strip() for p in prompt.split(KBRK)]
|
|
out_p.append([add + p for i, p in enumerate(prompts)])
|
|
out = [None] * batch * len(out_p[0]) * len(out_p)
|
|
for p, prs in enumerate(out_p): # inputs prompts
|
|
for r, pr in enumerate(prs): # prompts for regions
|
|
start = (p + r * plen) * batch
|
|
out[start : start + batch] = [pr] * batch # P1R1B1,P1R1B2...,P1R2B1,P1R2B2...,P2R1B1...
|
|
return out, out_p
|
|
|
|
|
|
### make regions from ratios
|
|
### ";" makes outercells, "," makes inner cells
|
|
def make_cells(ratios):
|
|
if ";" not in ratios and "," in ratios:
|
|
ratios = ratios.replace(",", ";")
|
|
ratios = ratios.split(";")
|
|
ratios = [inratios.split(",") for inratios in ratios]
|
|
|
|
icells = []
|
|
ocells = []
|
|
|
|
def startend(cells, array):
|
|
current_start = 0
|
|
array = [float(x) for x in array]
|
|
for value in array:
|
|
end = current_start + (value / sum(array))
|
|
cells.append([current_start, end])
|
|
current_start = end
|
|
|
|
startend(ocells, [r[0] for r in ratios])
|
|
|
|
for inratios in ratios:
|
|
if 2 > len(inratios):
|
|
icells.append([[0, 1]])
|
|
else:
|
|
add = []
|
|
startend(add, inratios[1:])
|
|
icells.append(add)
|
|
return ocells, icells, sum(len(cell) for cell in icells)
|
|
|
|
|
|
def make_emblist(self, prompts):
|
|
with torch.no_grad():
|
|
tokens = self.tokenizer(
|
|
prompts,
|
|
max_length=self.tokenizer.model_max_length,
|
|
padding=True,
|
|
truncation=True,
|
|
return_tensors="pt",
|
|
).input_ids.to(self.device)
|
|
embs = self.text_encoder(tokens, output_hidden_states=True).last_hidden_state.to(self.device, dtype=self.dtype)
|
|
return embs
|
|
|
|
|
|
def split_dims(xs, height, width):
|
|
def repeat_div(x, y):
|
|
while y > 0:
|
|
x = math.ceil(x / 2)
|
|
y = y - 1
|
|
return x
|
|
|
|
scale = math.ceil(math.log2(math.sqrt(height * width / xs)))
|
|
dsh = repeat_div(height, scale)
|
|
dsw = repeat_div(width, scale)
|
|
return dsh, dsw
|
|
|
|
|
|
##### for prompt mode
|
|
def get_attn_maps(self, attn):
|
|
height, width = self.hw
|
|
target_tokens = self.target_tokens
|
|
if (height, width) not in self.attnmaps_sizes:
|
|
self.attnmaps_sizes.append((height, width))
|
|
|
|
for b in range(self.batch):
|
|
for t in target_tokens:
|
|
power = self.power
|
|
add = attn[b, :, :, t[0] : t[0] + len(t)] ** (power) * (self.attnmaps_sizes.index((height, width)) + 1)
|
|
add = torch.sum(add, dim=2)
|
|
key = f"{t}-{b}"
|
|
if key not in self.attnmaps:
|
|
self.attnmaps[key] = add
|
|
else:
|
|
if self.attnmaps[key].shape[1] != add.shape[1]:
|
|
add = add.view(8, height, width)
|
|
add = FF.resize(add, self.attnmaps_sizes[0], antialias=None)
|
|
add = add.reshape_as(self.attnmaps[key])
|
|
|
|
self.attnmaps[key] = self.attnmaps[key] + add
|
|
|
|
|
|
def reset_attnmaps(self): # init parameters in every batch
|
|
self.step = 0
|
|
self.attnmaps = {} # made from attention maps
|
|
self.attnmaps_sizes = [] # height,width set of u-net blocks
|
|
self.attnmasks = {} # made from attnmaps for regions
|
|
self.maskready = False
|
|
self.history = {}
|
|
|
|
|
|
def saveattnmaps(self, output, h, w, th, step, regions):
|
|
masks = []
|
|
for i, mask in enumerate(self.history[step].values()):
|
|
img, _, mask = makepmask(self, mask, h, w, th[i % len(th)], step)
|
|
if self.ex:
|
|
masks = [x - mask for x in masks]
|
|
masks.append(mask)
|
|
if len(masks) == regions - 1:
|
|
output.images.extend([FF.to_pil_image(mask) for mask in masks])
|
|
masks = []
|
|
else:
|
|
output.images.append(img)
|
|
|
|
|
|
def makepmask(
|
|
self, mask, h, w, th, step
|
|
): # make masks from attention cache return [for preview, for attention, for Latent]
|
|
th = th - step * 0.005
|
|
if 0.05 >= th:
|
|
th = 0.05
|
|
mask = torch.mean(mask, dim=0)
|
|
mask = mask / mask.max().item()
|
|
mask = torch.where(mask > th, 1, 0)
|
|
mask = mask.float()
|
|
mask = mask.view(1, *self.attnmaps_sizes[0])
|
|
img = FF.to_pil_image(mask)
|
|
img = img.resize((w, h))
|
|
mask = FF.resize(mask, (h, w), interpolation=FF.InterpolationMode.NEAREST, antialias=None)
|
|
lmask = mask
|
|
mask = mask.reshape(h * w)
|
|
mask = torch.where(mask > 0.1, 1, 0)
|
|
return img, mask, lmask
|
|
|
|
|
|
def tokendealer(self, all_prompts):
|
|
for prompts in all_prompts:
|
|
targets = [p.split(",")[-1] for p in prompts[1:]]
|
|
tt = []
|
|
|
|
for target in targets:
|
|
ptokens = (
|
|
self.tokenizer(
|
|
prompts,
|
|
max_length=self.tokenizer.model_max_length,
|
|
padding=True,
|
|
truncation=True,
|
|
return_tensors="pt",
|
|
).input_ids
|
|
)[0]
|
|
ttokens = (
|
|
self.tokenizer(
|
|
target,
|
|
max_length=self.tokenizer.model_max_length,
|
|
padding=True,
|
|
truncation=True,
|
|
return_tensors="pt",
|
|
).input_ids
|
|
)[0]
|
|
|
|
tlist = []
|
|
|
|
for t in range(ttokens.shape[0] - 2):
|
|
for p in range(ptokens.shape[0]):
|
|
if ttokens[t + 1] == ptokens[p]:
|
|
tlist.append(p)
|
|
if tlist != []:
|
|
tt.append(tlist)
|
|
|
|
return tt
|
|
|
|
|
|
def scaled_dot_product_attention(
|
|
self,
|
|
query,
|
|
key,
|
|
value,
|
|
attn_mask=None,
|
|
dropout_p=0.0,
|
|
is_causal=False,
|
|
scale=None,
|
|
getattn=False,
|
|
) -> torch.Tensor:
|
|
# Efficient implementation equivalent to the following:
|
|
L, S = query.size(-2), key.size(-2)
|
|
scale_factor = 1 / math.sqrt(query.size(-1)) if scale is None else scale
|
|
attn_bias = torch.zeros(L, S, dtype=query.dtype, device=self.device)
|
|
if is_causal:
|
|
assert attn_mask is None
|
|
temp_mask = torch.ones(L, S, dtype=torch.bool).tril(diagonal=0)
|
|
attn_bias.masked_fill_(temp_mask.logical_not(), float("-inf"))
|
|
attn_bias.to(query.dtype)
|
|
|
|
if attn_mask is not None:
|
|
if attn_mask.dtype == torch.bool:
|
|
attn_mask.masked_fill_(attn_mask.logical_not(), float("-inf"))
|
|
else:
|
|
attn_bias += attn_mask
|
|
attn_weight = query @ key.transpose(-2, -1) * scale_factor
|
|
attn_weight += attn_bias
|
|
attn_weight = torch.softmax(attn_weight, dim=-1)
|
|
if getattn:
|
|
get_attn_maps(self, attn_weight)
|
|
attn_weight = torch.dropout(attn_weight, dropout_p, train=True)
|
|
return attn_weight @ value
|
|
|
|
|
|
def retrieve_timesteps(
|
|
scheduler,
|
|
num_inference_steps: Optional[int] = None,
|
|
device: Optional[Union[str, torch.device]] = None,
|
|
timesteps: Optional[List[int]] = None,
|
|
sigmas: Optional[List[float]] = None,
|
|
**kwargs,
|
|
):
|
|
r"""
|
|
Calls the scheduler's `set_timesteps` method and retrieves timesteps from the scheduler after the call. Handles
|
|
custom timesteps. Any kwargs will be supplied to `scheduler.set_timesteps`.
|
|
|
|
Args:
|
|
scheduler (`SchedulerMixin`):
|
|
The scheduler to get timesteps from.
|
|
num_inference_steps (`int`):
|
|
The number of diffusion steps used when generating samples with a pre-trained model. If used, `timesteps`
|
|
must be `None`.
|
|
device (`str` or `torch.device`, *optional*):
|
|
The device to which the timesteps should be moved to. If `None`, the timesteps are not moved.
|
|
timesteps (`List[int]`, *optional*):
|
|
Custom timesteps used to override the timestep spacing strategy of the scheduler. If `timesteps` is passed,
|
|
`num_inference_steps` and `sigmas` must be `None`.
|
|
sigmas (`List[float]`, *optional*):
|
|
Custom sigmas used to override the timestep spacing strategy of the scheduler. If `sigmas` is passed,
|
|
`num_inference_steps` and `timesteps` must be `None`.
|
|
|
|
Returns:
|
|
`Tuple[torch.Tensor, int]`: A tuple where the first element is the timestep schedule from the scheduler and the
|
|
second element is the number of inference steps.
|
|
"""
|
|
if timesteps is not None and sigmas is not None:
|
|
raise ValueError("Only one of `timesteps` or `sigmas` can be passed. Please choose one to set custom values")
|
|
if timesteps is not None:
|
|
accepts_timesteps = "timesteps" in set(inspect.signature(scheduler.set_timesteps).parameters.keys())
|
|
if not accepts_timesteps:
|
|
raise ValueError(
|
|
f"The current scheduler class {scheduler.__class__}'s `set_timesteps` does not support custom"
|
|
f" timestep schedules. Please check whether you are using the correct scheduler."
|
|
)
|
|
scheduler.set_timesteps(timesteps=timesteps, device=device, **kwargs)
|
|
timesteps = scheduler.timesteps
|
|
num_inference_steps = len(timesteps)
|
|
elif sigmas is not None:
|
|
accept_sigmas = "sigmas" in set(inspect.signature(scheduler.set_timesteps).parameters.keys())
|
|
if not accept_sigmas:
|
|
raise ValueError(
|
|
f"The current scheduler class {scheduler.__class__}'s `set_timesteps` does not support custom"
|
|
f" sigmas schedules. Please check whether you are using the correct scheduler."
|
|
)
|
|
scheduler.set_timesteps(sigmas=sigmas, device=device, **kwargs)
|
|
timesteps = scheduler.timesteps
|
|
num_inference_steps = len(timesteps)
|
|
else:
|
|
scheduler.set_timesteps(num_inference_steps, device=device, **kwargs)
|
|
timesteps = scheduler.timesteps
|
|
return timesteps, num_inference_steps
|
|
|
|
|
|
def rescale_noise_cfg(noise_cfg, noise_pred_text, guidance_rescale=0.0):
|
|
r"""
|
|
Rescales `noise_cfg` tensor based on `guidance_rescale` to improve image quality and fix overexposure. Based on
|
|
Section 3.4 from [Common Diffusion Noise Schedules and Sample Steps are
|
|
Flawed](https://huggingface.co/papers/2305.08891).
|
|
|
|
Args:
|
|
noise_cfg (`torch.Tensor`):
|
|
The predicted noise tensor for the guided diffusion process.
|
|
noise_pred_text (`torch.Tensor`):
|
|
The predicted noise tensor for the text-guided diffusion process.
|
|
guidance_rescale (`float`, *optional*, defaults to 0.0):
|
|
A rescale factor applied to the noise predictions.
|
|
|
|
Returns:
|
|
noise_cfg (`torch.Tensor`): The rescaled noise prediction tensor.
|
|
"""
|
|
std_text = noise_pred_text.std(dim=list(range(1, noise_pred_text.ndim)), keepdim=True)
|
|
std_cfg = noise_cfg.std(dim=list(range(1, noise_cfg.ndim)), keepdim=True)
|
|
# rescale the results from guidance (fixes overexposure)
|
|
noise_pred_rescaled = noise_cfg * (std_text / std_cfg)
|
|
# mix with the original results from guidance by factor guidance_rescale to avoid "plain looking" images
|
|
noise_cfg = guidance_rescale * noise_pred_rescaled + (1 - guidance_rescale) * noise_cfg
|
|
return noise_cfg
|