mirror of
https://github.com/huggingface/diffusers.git
synced 2026-01-27 17:22:53 +03:00
* update * update * Revert "update" This reverts commit73906381ab. * Revert "update" This reverts commit21a03f93ef. * update * update * update * update * update
1846 lines
90 KiB
Python
1846 lines
90 KiB
Python
# Copyright 2025 The DEVAIEXP Team and The HuggingFace Team. All rights reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
|
|
import inspect
|
|
from enum import Enum
|
|
from typing import Any, Dict, List, Optional, Tuple, Union
|
|
|
|
import numpy as np
|
|
import torch
|
|
import torch.nn.functional as F
|
|
from PIL import Image
|
|
from transformers import (
|
|
CLIPTextModel,
|
|
CLIPTextModelWithProjection,
|
|
CLIPTokenizer,
|
|
)
|
|
|
|
from diffusers.image_processor import PipelineImageInput, VaeImageProcessor
|
|
from diffusers.loaders import (
|
|
FromSingleFileMixin,
|
|
StableDiffusionXLLoraLoaderMixin,
|
|
TextualInversionLoaderMixin,
|
|
)
|
|
from diffusers.models import (
|
|
AutoencoderKL,
|
|
ControlNetModel,
|
|
ControlNetUnionModel,
|
|
MultiControlNetModel,
|
|
UNet2DConditionModel,
|
|
)
|
|
from diffusers.models.lora import adjust_lora_scale_text_encoder
|
|
from diffusers.pipelines.pipeline_utils import DiffusionPipeline, StableDiffusionMixin
|
|
from diffusers.pipelines.stable_diffusion_xl.pipeline_output import StableDiffusionXLPipelineOutput
|
|
from diffusers.schedulers import KarrasDiffusionSchedulers, LMSDiscreteScheduler
|
|
from diffusers.utils import (
|
|
USE_PEFT_BACKEND,
|
|
deprecate,
|
|
logging,
|
|
replace_example_docstring,
|
|
scale_lora_layers,
|
|
unscale_lora_layers,
|
|
)
|
|
from diffusers.utils.import_utils import is_invisible_watermark_available
|
|
from diffusers.utils.torch_utils import is_compiled_module, randn_tensor
|
|
|
|
|
|
if is_invisible_watermark_available():
|
|
from diffusers.pipelines.stable_diffusion_xl.watermark import StableDiffusionXLWatermarker
|
|
|
|
from diffusers.utils import is_torch_xla_available
|
|
|
|
|
|
if is_torch_xla_available():
|
|
import torch_xla.core.xla_model as xm
|
|
|
|
XLA_AVAILABLE = True
|
|
else:
|
|
XLA_AVAILABLE = False
|
|
|
|
logger = logging.get_logger(__name__) # pylint: disable=invalid-name
|
|
|
|
|
|
EXAMPLE_DOC_STRING = """
|
|
Examples:
|
|
```py
|
|
import torch
|
|
from diffusers import DiffusionPipeline, ControlNetUnionModel, AutoencoderKL, UniPCMultistepScheduler
|
|
from diffusers.utils import load_image
|
|
from PIL import Image
|
|
|
|
device = "cuda"
|
|
|
|
# Initialize the models and pipeline
|
|
controlnet = ControlNetUnionModel.from_pretrained(
|
|
"brad-twinkl/controlnet-union-sdxl-1.0-promax", torch_dtype=torch.float16
|
|
).to(device=device)
|
|
vae = AutoencoderKL.from_pretrained("madebyollin/sdxl-vae-fp16-fix", torch_dtype=torch.float16).to(device=device)
|
|
|
|
model_id = "SG161222/RealVisXL_V5.0"
|
|
pipe = StableDiffusionXLControlNetTileSRPipeline.from_pretrained(
|
|
model_id, controlnet=controlnet, vae=vae, torch_dtype=torch.float16, use_safetensors=True, variant="fp16"
|
|
).to(device)
|
|
|
|
pipe.enable_model_cpu_offload() # << Enable this if you have limited VRAM
|
|
pipe.enable_vae_tiling() # << Enable this if you have limited VRAM
|
|
pipe.enable_vae_slicing() # << Enable this if you have limited VRAM
|
|
|
|
# Set selected scheduler
|
|
pipe.scheduler = UniPCMultistepScheduler.from_config(pipe.scheduler.config)
|
|
|
|
# Load image
|
|
control_image = load_image("https://huggingface.co/datasets/DEVAIEXP/assets/resolve/main/1.jpg")
|
|
original_height = control_image.height
|
|
original_width = control_image.width
|
|
print(f"Current resolution: H:{original_height} x W:{original_width}")
|
|
|
|
# Pre-upscale image for tiling
|
|
resolution = 4096
|
|
tile_gaussian_sigma = 0.3
|
|
max_tile_size = 1024 # or 1280
|
|
|
|
current_size = max(control_image.size)
|
|
scale_factor = max(2, resolution / current_size)
|
|
new_size = (int(control_image.width * scale_factor), int(control_image.height * scale_factor))
|
|
image = control_image.resize(new_size, Image.LANCZOS)
|
|
|
|
# Update target height and width
|
|
target_height = image.height
|
|
target_width = image.width
|
|
print(f"Target resolution: H:{target_height} x W:{target_width}")
|
|
|
|
# Calculate overlap size
|
|
normal_tile_overlap, border_tile_overlap = calculate_overlap(target_width, target_height)
|
|
|
|
# Set other params
|
|
tile_weighting_method = TileWeightingMethod.COSINE.value
|
|
guidance_scale = 4
|
|
num_inference_steps = 35
|
|
denoising_strenght = 0.65
|
|
controlnet_strength = 1.0
|
|
prompt = "high-quality, noise-free edges, high quality, 4k, hd, 8k"
|
|
negative_prompt = "blurry, pixelated, noisy, low resolution, artifacts, poor details"
|
|
|
|
# Image generation
|
|
control_image = pipe(
|
|
image=image,
|
|
control_image=control_image,
|
|
control_mode=[6],
|
|
controlnet_conditioning_scale=float(controlnet_strength),
|
|
prompt=prompt,
|
|
negative_prompt=negative_prompt,
|
|
normal_tile_overlap=normal_tile_overlap,
|
|
border_tile_overlap=border_tile_overlap,
|
|
height=target_height,
|
|
width=target_width,
|
|
original_size=(original_width, original_height),
|
|
target_size=(target_width, target_height),
|
|
guidance_scale=guidance_scale,
|
|
strength=float(denoising_strenght),
|
|
tile_weighting_method=tile_weighting_method,
|
|
max_tile_size=max_tile_size,
|
|
tile_gaussian_sigma=float(tile_gaussian_sigma),
|
|
num_inference_steps=num_inference_steps,
|
|
)["images"][0]
|
|
```
|
|
"""
|
|
|
|
|
|
# This function was copied and adapted from https://huggingface.co/spaces/gokaygokay/TileUpscalerV2, licensed under Apache 2.0.
|
|
def _adaptive_tile_size(image_size, base_tile_size=512, max_tile_size=1280):
|
|
"""
|
|
Calculate the adaptive tile size based on the image dimensions, ensuring the tile
|
|
respects the aspect ratio and stays within the specified size limits.
|
|
"""
|
|
width, height = image_size
|
|
aspect_ratio = width / height
|
|
|
|
if aspect_ratio > 1:
|
|
# Landscape orientation
|
|
tile_width = min(width, max_tile_size)
|
|
tile_height = min(int(tile_width / aspect_ratio), max_tile_size)
|
|
else:
|
|
# Portrait or square orientation
|
|
tile_height = min(height, max_tile_size)
|
|
tile_width = min(int(tile_height * aspect_ratio), max_tile_size)
|
|
|
|
# Ensure the tile size is not smaller than the base_tile_size
|
|
tile_width = max(tile_width, base_tile_size)
|
|
tile_height = max(tile_height, base_tile_size)
|
|
|
|
return tile_width, tile_height
|
|
|
|
|
|
# Copied and adapted from https://github.com/huggingface/diffusers/blob/main/examples/community/mixture_tiling.py
|
|
def _tile2pixel_indices(
|
|
tile_row, tile_col, tile_width, tile_height, tile_row_overlap, tile_col_overlap, image_width, image_height
|
|
):
|
|
"""Given a tile row and column numbers returns the range of pixels affected by that tiles in the overall image
|
|
|
|
Returns a tuple with:
|
|
- Starting coordinates of rows in pixel space
|
|
- Ending coordinates of rows in pixel space
|
|
- Starting coordinates of columns in pixel space
|
|
- Ending coordinates of columns in pixel space
|
|
"""
|
|
# Calculate initial indices
|
|
px_row_init = 0 if tile_row == 0 else tile_row * (tile_height - tile_row_overlap)
|
|
px_col_init = 0 if tile_col == 0 else tile_col * (tile_width - tile_col_overlap)
|
|
|
|
# Calculate end indices
|
|
px_row_end = px_row_init + tile_height
|
|
px_col_end = px_col_init + tile_width
|
|
|
|
# Ensure the last tile does not exceed the image dimensions
|
|
px_row_end = min(px_row_end, image_height)
|
|
px_col_end = min(px_col_end, image_width)
|
|
|
|
return px_row_init, px_row_end, px_col_init, px_col_end
|
|
|
|
|
|
# Copied and adapted from https://github.com/huggingface/diffusers/blob/main/examples/community/mixture_tiling.py
|
|
def _tile2latent_indices(
|
|
tile_row, tile_col, tile_width, tile_height, tile_row_overlap, tile_col_overlap, image_width, image_height
|
|
):
|
|
"""Given a tile row and column numbers returns the range of latents affected by that tiles in the overall image
|
|
|
|
Returns a tuple with:
|
|
- Starting coordinates of rows in latent space
|
|
- Ending coordinates of rows in latent space
|
|
- Starting coordinates of columns in latent space
|
|
- Ending coordinates of columns in latent space
|
|
"""
|
|
# Get pixel indices
|
|
px_row_init, px_row_end, px_col_init, px_col_end = _tile2pixel_indices(
|
|
tile_row, tile_col, tile_width, tile_height, tile_row_overlap, tile_col_overlap, image_width, image_height
|
|
)
|
|
|
|
# Convert to latent space
|
|
latent_row_init = px_row_init // 8
|
|
latent_row_end = px_row_end // 8
|
|
latent_col_init = px_col_init // 8
|
|
latent_col_end = px_col_end // 8
|
|
latent_height = image_height // 8
|
|
latent_width = image_width // 8
|
|
|
|
# Ensure the last tile does not exceed the latent dimensions
|
|
latent_row_end = min(latent_row_end, latent_height)
|
|
latent_col_end = min(latent_col_end, latent_width)
|
|
|
|
return latent_row_init, latent_row_end, latent_col_init, latent_col_end
|
|
|
|
|
|
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion_img2img.retrieve_latents
|
|
def retrieve_latents(
|
|
encoder_output: torch.Tensor, generator: Optional[torch.Generator] = None, sample_mode: str = "sample"
|
|
):
|
|
if hasattr(encoder_output, "latent_dist") and sample_mode == "sample":
|
|
return encoder_output.latent_dist.sample(generator)
|
|
elif hasattr(encoder_output, "latent_dist") and sample_mode == "argmax":
|
|
return encoder_output.latent_dist.mode()
|
|
elif hasattr(encoder_output, "latents"):
|
|
return encoder_output.latents
|
|
else:
|
|
raise AttributeError("Could not access latents of provided encoder_output")
|
|
|
|
|
|
class StableDiffusionXLControlNetTileSRPipeline(
|
|
DiffusionPipeline,
|
|
StableDiffusionMixin,
|
|
TextualInversionLoaderMixin,
|
|
StableDiffusionXLLoraLoaderMixin,
|
|
FromSingleFileMixin,
|
|
):
|
|
r"""
|
|
Pipeline for image-to-image generation using Stable Diffusion XL with ControlNet guidance.
|
|
|
|
This model inherits from [`DiffusionPipeline`]. Check the superclass documentation for the generic methods the
|
|
library implements for all the pipelines (such as downloading or saving, running on a particular device, etc.)
|
|
|
|
The pipeline also inherits the following loading methods:
|
|
- [`~loaders.TextualInversionLoaderMixin.load_textual_inversion`] for loading textual inversion embeddings
|
|
- [`~loaders.StableDiffusionXLLoraLoaderMixin.load_lora_weights`] for loading LoRA weights
|
|
- [`~loaders.StableDiffusionXLLoraLoaderMixin.save_lora_weights`] for saving LoRA weights
|
|
|
|
Args:
|
|
vae ([`AutoencoderKL`]):
|
|
Variational Auto-Encoder (VAE) Model to encode and decode images to and from latent representations.
|
|
text_encoder ([`CLIPTextModel`]):
|
|
Frozen text-encoder. Stable Diffusion uses the text portion of
|
|
[CLIP](https://huggingface.co/docs/transformers/model_doc/clip#transformers.CLIPTextModel), specifically
|
|
the [clip-vit-large-patch14](https://huggingface.co/openai/clip-vit-large-patch14) variant.
|
|
text_encoder_2 ([` CLIPTextModelWithProjection`]):
|
|
Second frozen text-encoder. Stable Diffusion XL uses the text and pool portion of
|
|
[CLIP](https://huggingface.co/docs/transformers/model_doc/clip#transformers.CLIPTextModelWithProjection),
|
|
specifically the
|
|
[laion/CLIP-ViT-bigG-14-laion2B-39B-b160k](https://huggingface.co/laion/CLIP-ViT-bigG-14-laion2B-39B-b160k)
|
|
variant.
|
|
tokenizer (`CLIPTokenizer`):
|
|
Tokenizer of class
|
|
[CLIPTokenizer](https://huggingface.co/docs/transformers/v4.21.0/en/model_doc/clip#transformers.CLIPTokenizer).
|
|
tokenizer_2 (`CLIPTokenizer`):
|
|
Second Tokenizer of class
|
|
[CLIPTokenizer](https://huggingface.co/docs/transformers/v4.21.0/en/model_doc/clip#transformers.CLIPTokenizer).
|
|
unet ([`UNet2DConditionModel`]): Conditional U-Net architecture to denoise the encoded image latents.
|
|
controlnet ([`ControlNetUnionModel`]):
|
|
Provides additional conditioning to the unet during the denoising process.
|
|
scheduler ([`SchedulerMixin`]):
|
|
A scheduler to be used in combination with `unet` to denoise the encoded image latents. Can be one of
|
|
[`DDIMScheduler`], [`LMSDiscreteScheduler`], or [`PNDMScheduler`].
|
|
requires_aesthetics_score (`bool`, *optional*, defaults to `"False"`):
|
|
Whether the `unet` requires an `aesthetic_score` condition to be passed during inference. Also see the
|
|
config of `stabilityai/stable-diffusion-xl-refiner-1-0`.
|
|
force_zeros_for_empty_prompt (`bool`, *optional*, defaults to `"True"`):
|
|
Whether the negative prompt embeddings shall be forced to always be set to 0. Also see the config of
|
|
`stabilityai/stable-diffusion-xl-base-1-0`.
|
|
add_watermarker (`bool`, *optional*):
|
|
Whether to use the [invisible_watermark library](https://github.com/ShieldMnt/invisible-watermark/) to
|
|
watermark output images. If not defined, it will default to True if the package is installed, otherwise no
|
|
watermarker will be used.
|
|
"""
|
|
|
|
model_cpu_offload_seq = "text_encoder->text_encoder_2->unet->vae"
|
|
_optional_components = [
|
|
"tokenizer",
|
|
"tokenizer_2",
|
|
"text_encoder",
|
|
"text_encoder_2",
|
|
]
|
|
|
|
def __init__(
|
|
self,
|
|
vae: AutoencoderKL,
|
|
text_encoder: CLIPTextModel,
|
|
text_encoder_2: CLIPTextModelWithProjection,
|
|
tokenizer: CLIPTokenizer,
|
|
tokenizer_2: CLIPTokenizer,
|
|
unet: UNet2DConditionModel,
|
|
controlnet: ControlNetUnionModel,
|
|
scheduler: KarrasDiffusionSchedulers,
|
|
requires_aesthetics_score: bool = False,
|
|
force_zeros_for_empty_prompt: bool = True,
|
|
add_watermarker: Optional[bool] = None,
|
|
):
|
|
super().__init__()
|
|
|
|
if not isinstance(controlnet, ControlNetUnionModel):
|
|
raise ValueError("Expected `controlnet` to be of type `ControlNetUnionModel`.")
|
|
|
|
self.register_modules(
|
|
vae=vae,
|
|
text_encoder=text_encoder,
|
|
text_encoder_2=text_encoder_2,
|
|
tokenizer=tokenizer,
|
|
tokenizer_2=tokenizer_2,
|
|
unet=unet,
|
|
controlnet=controlnet,
|
|
scheduler=scheduler,
|
|
)
|
|
self.vae_scale_factor = 2 ** (len(self.vae.config.block_out_channels) - 1) if getattr(self, "vae", None) else 8
|
|
self.image_processor = VaeImageProcessor(vae_scale_factor=self.vae_scale_factor, do_convert_rgb=True)
|
|
self.control_image_processor = VaeImageProcessor(
|
|
vae_scale_factor=self.vae_scale_factor, do_convert_rgb=True, do_normalize=False
|
|
)
|
|
self.mask_processor = VaeImageProcessor(
|
|
vae_scale_factor=self.vae_scale_factor, do_normalize=False, do_binarize=True, do_convert_grayscale=True
|
|
)
|
|
add_watermarker = add_watermarker if add_watermarker is not None else is_invisible_watermark_available()
|
|
|
|
if add_watermarker:
|
|
self.watermark = StableDiffusionXLWatermarker()
|
|
else:
|
|
self.watermark = None
|
|
|
|
self.register_to_config(force_zeros_for_empty_prompt=force_zeros_for_empty_prompt)
|
|
self.register_to_config(requires_aesthetics_score=requires_aesthetics_score)
|
|
|
|
def calculate_overlap(self, width, height, base_overlap=128):
|
|
"""
|
|
Calculates dynamic overlap based on the image's aspect ratio.
|
|
|
|
Args:
|
|
width (int): Width of the image in pixels.
|
|
height (int): Height of the image in pixels.
|
|
base_overlap (int, optional): Base overlap value in pixels. Defaults to 128.
|
|
|
|
Returns:
|
|
tuple: A tuple containing:
|
|
- row_overlap (int): Overlap between tiles in consecutive rows.
|
|
- col_overlap (int): Overlap between tiles in consecutive columns.
|
|
"""
|
|
ratio = height / width
|
|
if ratio < 1: # Image is wider than tall
|
|
return base_overlap // 2, base_overlap
|
|
else: # Image is taller than wide
|
|
return base_overlap, base_overlap * 2
|
|
|
|
class TileWeightingMethod(Enum):
|
|
"""Mode in which the tile weights will be generated"""
|
|
|
|
COSINE = "Cosine"
|
|
GAUSSIAN = "Gaussian"
|
|
|
|
# Copied from diffusers.pipelines.stable_diffusion_xl.pipeline_stable_diffusion_xl.StableDiffusionXLPipeline.encode_prompt
|
|
def encode_prompt(
|
|
self,
|
|
prompt: str,
|
|
prompt_2: Optional[str] = None,
|
|
device: Optional[torch.device] = None,
|
|
num_images_per_prompt: int = 1,
|
|
do_classifier_free_guidance: bool = True,
|
|
negative_prompt: Optional[str] = None,
|
|
negative_prompt_2: Optional[str] = None,
|
|
prompt_embeds: Optional[torch.Tensor] = None,
|
|
negative_prompt_embeds: Optional[torch.Tensor] = None,
|
|
pooled_prompt_embeds: Optional[torch.Tensor] = None,
|
|
negative_pooled_prompt_embeds: Optional[torch.Tensor] = None,
|
|
lora_scale: Optional[float] = None,
|
|
clip_skip: Optional[int] = None,
|
|
):
|
|
r"""
|
|
Encodes the prompt into text encoder hidden states.
|
|
|
|
Args:
|
|
prompt (`str` or `List[str]`, *optional*):
|
|
prompt to be encoded
|
|
prompt_2 (`str` or `List[str]`, *optional*):
|
|
The prompt or prompts to be sent to the `tokenizer_2` and `text_encoder_2`. If not defined, `prompt` is
|
|
used in both text-encoders
|
|
device: (`torch.device`):
|
|
torch device
|
|
num_images_per_prompt (`int`):
|
|
number of images that should be generated per prompt
|
|
do_classifier_free_guidance (`bool`):
|
|
whether to use classifier free guidance or not
|
|
negative_prompt (`str` or `List[str]`, *optional*):
|
|
The prompt or prompts not to guide the image generation. If not defined, one has to pass
|
|
`negative_prompt_embeds` instead. Ignored when not using guidance (i.e., ignored if `guidance_scale` is
|
|
less than `1`).
|
|
negative_prompt_2 (`str` or `List[str]`, *optional*):
|
|
The prompt or prompts not to guide the image generation to be sent to `tokenizer_2` and
|
|
`text_encoder_2`. If not defined, `negative_prompt` is used in both text-encoders
|
|
prompt_embeds (`torch.Tensor`, *optional*):
|
|
Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not
|
|
provided, text embeddings will be generated from `prompt` input argument.
|
|
negative_prompt_embeds (`torch.Tensor`, *optional*):
|
|
Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt
|
|
weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input
|
|
argument.
|
|
pooled_prompt_embeds (`torch.Tensor`, *optional*):
|
|
Pre-generated pooled text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting.
|
|
If not provided, pooled text embeddings will be generated from `prompt` input argument.
|
|
negative_pooled_prompt_embeds (`torch.Tensor`, *optional*):
|
|
Pre-generated negative pooled text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt
|
|
weighting. If not provided, pooled negative_prompt_embeds will be generated from `negative_prompt`
|
|
input argument.
|
|
lora_scale (`float`, *optional*):
|
|
A lora scale that will be applied to all LoRA layers of the text encoder if LoRA layers are loaded.
|
|
clip_skip (`int`, *optional*):
|
|
Number of layers to be skipped from CLIP while computing the prompt embeddings. A value of 1 means that
|
|
the output of the pre-final layer will be used for computing the prompt embeddings.
|
|
"""
|
|
device = device or self._execution_device
|
|
|
|
# set lora scale so that monkey patched LoRA
|
|
# function of text encoder can correctly access it
|
|
if lora_scale is not None and isinstance(self, StableDiffusionXLLoraLoaderMixin):
|
|
self._lora_scale = lora_scale
|
|
|
|
# dynamically adjust the LoRA scale
|
|
if self.text_encoder is not None:
|
|
if not USE_PEFT_BACKEND:
|
|
adjust_lora_scale_text_encoder(self.text_encoder, lora_scale)
|
|
else:
|
|
scale_lora_layers(self.text_encoder, lora_scale)
|
|
|
|
if self.text_encoder_2 is not None:
|
|
if not USE_PEFT_BACKEND:
|
|
adjust_lora_scale_text_encoder(self.text_encoder_2, lora_scale)
|
|
else:
|
|
scale_lora_layers(self.text_encoder_2, lora_scale)
|
|
|
|
prompt = [prompt] if isinstance(prompt, str) else prompt
|
|
|
|
if prompt is not None:
|
|
batch_size = len(prompt)
|
|
else:
|
|
batch_size = prompt_embeds.shape[0]
|
|
|
|
# Define tokenizers and text encoders
|
|
tokenizers = [self.tokenizer, self.tokenizer_2] if self.tokenizer is not None else [self.tokenizer_2]
|
|
text_encoders = (
|
|
[self.text_encoder, self.text_encoder_2] if self.text_encoder is not None else [self.text_encoder_2]
|
|
)
|
|
dtype = text_encoders[0].dtype
|
|
if prompt_embeds is None:
|
|
prompt_2 = prompt_2 or prompt
|
|
prompt_2 = [prompt_2] if isinstance(prompt_2, str) else prompt_2
|
|
|
|
# textual inversion: process multi-vector tokens if necessary
|
|
prompt_embeds_list = []
|
|
prompts = [prompt, prompt_2]
|
|
for prompt, tokenizer, text_encoder in zip(prompts, tokenizers, text_encoders):
|
|
if isinstance(self, TextualInversionLoaderMixin):
|
|
prompt = self.maybe_convert_prompt(prompt, tokenizer)
|
|
|
|
text_inputs = tokenizer(
|
|
prompt,
|
|
padding="max_length",
|
|
max_length=tokenizer.model_max_length,
|
|
truncation=True,
|
|
return_tensors="pt",
|
|
)
|
|
|
|
text_input_ids = text_inputs.input_ids
|
|
untruncated_ids = tokenizer(prompt, padding="longest", return_tensors="pt").input_ids
|
|
|
|
if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and not torch.equal(
|
|
text_input_ids, untruncated_ids
|
|
):
|
|
removed_text = tokenizer.batch_decode(untruncated_ids[:, tokenizer.model_max_length - 1 : -1])
|
|
logger.warning(
|
|
"The following part of your input was truncated because CLIP can only handle sequences up to"
|
|
f" {tokenizer.model_max_length} tokens: {removed_text}"
|
|
)
|
|
text_encoder.to(dtype)
|
|
prompt_embeds = text_encoder(text_input_ids.to(device), output_hidden_states=True)
|
|
|
|
# We are only ALWAYS interested in the pooled output of the final text encoder
|
|
if pooled_prompt_embeds is None and prompt_embeds[0].ndim == 2:
|
|
pooled_prompt_embeds = prompt_embeds[0]
|
|
|
|
if clip_skip is None:
|
|
prompt_embeds = prompt_embeds.hidden_states[-2]
|
|
else:
|
|
# "2" because SDXL always indexes from the penultimate layer.
|
|
prompt_embeds = prompt_embeds.hidden_states[-(clip_skip + 2)]
|
|
|
|
prompt_embeds_list.append(prompt_embeds)
|
|
|
|
prompt_embeds = torch.concat(prompt_embeds_list, dim=-1)
|
|
|
|
# get unconditional embeddings for classifier free guidance
|
|
zero_out_negative_prompt = negative_prompt is None and self.config.force_zeros_for_empty_prompt
|
|
if do_classifier_free_guidance and negative_prompt_embeds is None and zero_out_negative_prompt:
|
|
negative_prompt_embeds = torch.zeros_like(prompt_embeds)
|
|
negative_pooled_prompt_embeds = torch.zeros_like(pooled_prompt_embeds)
|
|
elif do_classifier_free_guidance and negative_prompt_embeds is None:
|
|
negative_prompt = negative_prompt or ""
|
|
negative_prompt_2 = negative_prompt_2 or negative_prompt
|
|
|
|
# normalize str to list
|
|
negative_prompt = batch_size * [negative_prompt] if isinstance(negative_prompt, str) else negative_prompt
|
|
negative_prompt_2 = (
|
|
batch_size * [negative_prompt_2] if isinstance(negative_prompt_2, str) else negative_prompt_2
|
|
)
|
|
|
|
uncond_tokens: List[str]
|
|
if prompt is not None and type(prompt) is not type(negative_prompt):
|
|
raise TypeError(
|
|
f"`negative_prompt` should be the same type to `prompt`, but got {type(negative_prompt)} !="
|
|
f" {type(prompt)}."
|
|
)
|
|
elif batch_size != len(negative_prompt):
|
|
raise ValueError(
|
|
f"`negative_prompt`: {negative_prompt} has batch size {len(negative_prompt)}, but `prompt`:"
|
|
f" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches"
|
|
" the batch size of `prompt`."
|
|
)
|
|
else:
|
|
uncond_tokens = [negative_prompt, negative_prompt_2]
|
|
|
|
negative_prompt_embeds_list = []
|
|
for negative_prompt, tokenizer, text_encoder in zip(uncond_tokens, tokenizers, text_encoders):
|
|
if isinstance(self, TextualInversionLoaderMixin):
|
|
negative_prompt = self.maybe_convert_prompt(negative_prompt, tokenizer)
|
|
|
|
max_length = prompt_embeds.shape[1]
|
|
uncond_input = tokenizer(
|
|
negative_prompt,
|
|
padding="max_length",
|
|
max_length=max_length,
|
|
truncation=True,
|
|
return_tensors="pt",
|
|
)
|
|
|
|
negative_prompt_embeds = text_encoder(
|
|
uncond_input.input_ids.to(device),
|
|
output_hidden_states=True,
|
|
)
|
|
|
|
# We are only ALWAYS interested in the pooled output of the final text encoder
|
|
if negative_pooled_prompt_embeds is None and negative_prompt_embeds[0].ndim == 2:
|
|
negative_pooled_prompt_embeds = negative_prompt_embeds[0]
|
|
negative_prompt_embeds = negative_prompt_embeds.hidden_states[-2]
|
|
|
|
negative_prompt_embeds_list.append(negative_prompt_embeds)
|
|
|
|
negative_prompt_embeds = torch.concat(negative_prompt_embeds_list, dim=-1)
|
|
|
|
if self.text_encoder_2 is not None:
|
|
prompt_embeds = prompt_embeds.to(dtype=self.text_encoder_2.dtype, device=device)
|
|
else:
|
|
prompt_embeds = prompt_embeds.to(dtype=self.unet.dtype, device=device)
|
|
|
|
bs_embed, seq_len, _ = prompt_embeds.shape
|
|
# duplicate text embeddings for each generation per prompt, using mps friendly method
|
|
prompt_embeds = prompt_embeds.repeat(1, num_images_per_prompt, 1)
|
|
prompt_embeds = prompt_embeds.view(bs_embed * num_images_per_prompt, seq_len, -1)
|
|
|
|
if do_classifier_free_guidance:
|
|
# duplicate unconditional embeddings for each generation per prompt, using mps friendly method
|
|
seq_len = negative_prompt_embeds.shape[1]
|
|
|
|
if self.text_encoder_2 is not None:
|
|
negative_prompt_embeds = negative_prompt_embeds.to(dtype=self.text_encoder_2.dtype, device=device)
|
|
else:
|
|
negative_prompt_embeds = negative_prompt_embeds.to(dtype=self.unet.dtype, device=device)
|
|
|
|
negative_prompt_embeds = negative_prompt_embeds.repeat(1, num_images_per_prompt, 1)
|
|
negative_prompt_embeds = negative_prompt_embeds.view(batch_size * num_images_per_prompt, seq_len, -1)
|
|
|
|
pooled_prompt_embeds = pooled_prompt_embeds.repeat(1, num_images_per_prompt).view(
|
|
bs_embed * num_images_per_prompt, -1
|
|
)
|
|
if do_classifier_free_guidance:
|
|
negative_pooled_prompt_embeds = negative_pooled_prompt_embeds.repeat(1, num_images_per_prompt).view(
|
|
bs_embed * num_images_per_prompt, -1
|
|
)
|
|
|
|
if self.text_encoder is not None:
|
|
if isinstance(self, StableDiffusionXLLoraLoaderMixin) and USE_PEFT_BACKEND:
|
|
# Retrieve the original scale by scaling back the LoRA layers
|
|
unscale_lora_layers(self.text_encoder, lora_scale)
|
|
|
|
if self.text_encoder_2 is not None:
|
|
if isinstance(self, StableDiffusionXLLoraLoaderMixin) and USE_PEFT_BACKEND:
|
|
# Retrieve the original scale by scaling back the LoRA layers
|
|
unscale_lora_layers(self.text_encoder_2, lora_scale)
|
|
|
|
return prompt_embeds, negative_prompt_embeds, pooled_prompt_embeds, negative_pooled_prompt_embeds
|
|
|
|
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.prepare_extra_step_kwargs
|
|
def prepare_extra_step_kwargs(self, generator, eta):
|
|
# prepare extra kwargs for the scheduler step, since not all schedulers have the same signature
|
|
# eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers.
|
|
# eta corresponds to η in DDIM paper: https://huggingface.co/papers/2010.02502
|
|
# and should be between [0, 1]
|
|
|
|
accepts_eta = "eta" in set(inspect.signature(self.scheduler.step).parameters.keys())
|
|
extra_step_kwargs = {}
|
|
if accepts_eta:
|
|
extra_step_kwargs["eta"] = eta
|
|
|
|
# check if the scheduler accepts generator
|
|
accepts_generator = "generator" in set(inspect.signature(self.scheduler.step).parameters.keys())
|
|
if accepts_generator:
|
|
extra_step_kwargs["generator"] = generator
|
|
return extra_step_kwargs
|
|
|
|
def check_inputs(
|
|
self,
|
|
prompt,
|
|
height,
|
|
width,
|
|
image,
|
|
strength,
|
|
num_inference_steps,
|
|
normal_tile_overlap,
|
|
border_tile_overlap,
|
|
max_tile_size,
|
|
tile_gaussian_sigma,
|
|
tile_weighting_method,
|
|
controlnet_conditioning_scale=1.0,
|
|
control_guidance_start=0.0,
|
|
control_guidance_end=1.0,
|
|
):
|
|
if height % 8 != 0 or width % 8 != 0:
|
|
raise ValueError(f"`height` and `width` have to be divisible by 8 but are {height} and {width}.")
|
|
|
|
if prompt is not None and (not isinstance(prompt, str) and not isinstance(prompt, list)):
|
|
raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(prompt)}")
|
|
|
|
if strength < 0 or strength > 1:
|
|
raise ValueError(f"The value of strength should in [0.0, 1.0] but is {strength}")
|
|
if num_inference_steps is None:
|
|
raise ValueError("`num_inference_steps` cannot be None.")
|
|
elif not isinstance(num_inference_steps, int) or num_inference_steps <= 0:
|
|
raise ValueError(
|
|
f"`num_inference_steps` has to be a positive integer but is {num_inference_steps} of type"
|
|
f" {type(num_inference_steps)}."
|
|
)
|
|
if normal_tile_overlap is None:
|
|
raise ValueError("`normal_tile_overlap` cannot be None.")
|
|
elif not isinstance(normal_tile_overlap, int) or normal_tile_overlap < 64:
|
|
raise ValueError(
|
|
f"`normal_tile_overlap` has to be greater than 64 but is {normal_tile_overlap} of type"
|
|
f" {type(normal_tile_overlap)}."
|
|
)
|
|
if border_tile_overlap is None:
|
|
raise ValueError("`border_tile_overlap` cannot be None.")
|
|
elif not isinstance(border_tile_overlap, int) or border_tile_overlap < 128:
|
|
raise ValueError(
|
|
f"`border_tile_overlap` has to be greater than 128 but is {border_tile_overlap} of type"
|
|
f" {type(border_tile_overlap)}."
|
|
)
|
|
if max_tile_size is None:
|
|
raise ValueError("`max_tile_size` cannot be None.")
|
|
elif not isinstance(max_tile_size, int) or max_tile_size not in (1024, 1280):
|
|
raise ValueError(
|
|
f"`max_tile_size` has to be in 1024 or 1280 but is {max_tile_size} of type {type(max_tile_size)}."
|
|
)
|
|
if tile_gaussian_sigma is None:
|
|
raise ValueError("`tile_gaussian_sigma` cannot be None.")
|
|
elif not isinstance(tile_gaussian_sigma, float) or tile_gaussian_sigma <= 0:
|
|
raise ValueError(
|
|
f"`tile_gaussian_sigma` has to be a positive float but is {tile_gaussian_sigma} of type"
|
|
f" {type(tile_gaussian_sigma)}."
|
|
)
|
|
if tile_weighting_method is None:
|
|
raise ValueError("`tile_weighting_method` cannot be None.")
|
|
elif not isinstance(tile_weighting_method, str) or tile_weighting_method not in [
|
|
t.value for t in self.TileWeightingMethod
|
|
]:
|
|
raise ValueError(
|
|
f"`tile_weighting_method` has to be a string in ({[t.value for t in self.TileWeightingMethod]}) but is {tile_weighting_method} of type"
|
|
f" {type(tile_weighting_method)}."
|
|
)
|
|
|
|
# Check `image`
|
|
is_compiled = hasattr(F, "scaled_dot_product_attention") and isinstance(
|
|
self.controlnet, torch._dynamo.eval_frame.OptimizedModule
|
|
)
|
|
if (
|
|
isinstance(self.controlnet, ControlNetModel)
|
|
or is_compiled
|
|
and isinstance(self.controlnet._orig_mod, ControlNetModel)
|
|
):
|
|
self.check_image(image, prompt)
|
|
elif (
|
|
isinstance(self.controlnet, ControlNetUnionModel)
|
|
or is_compiled
|
|
and isinstance(self.controlnet._orig_mod, ControlNetUnionModel)
|
|
):
|
|
self.check_image(image, prompt)
|
|
else:
|
|
assert False
|
|
|
|
# Check `controlnet_conditioning_scale`
|
|
if (
|
|
isinstance(self.controlnet, ControlNetUnionModel)
|
|
or is_compiled
|
|
and isinstance(self.controlnet._orig_mod, ControlNetUnionModel)
|
|
) or (
|
|
isinstance(self.controlnet, MultiControlNetModel)
|
|
or is_compiled
|
|
and isinstance(self.controlnet._orig_mod, MultiControlNetModel)
|
|
):
|
|
if not isinstance(controlnet_conditioning_scale, float):
|
|
raise TypeError("For single controlnet: `controlnet_conditioning_scale` must be type `float`.")
|
|
elif (
|
|
isinstance(self.controlnet, MultiControlNetModel)
|
|
or is_compiled
|
|
and isinstance(self.controlnet._orig_mod, MultiControlNetModel)
|
|
):
|
|
if isinstance(controlnet_conditioning_scale, list):
|
|
if any(isinstance(i, list) for i in controlnet_conditioning_scale):
|
|
raise ValueError("A single batch of multiple conditionings are supported at the moment.")
|
|
elif isinstance(controlnet_conditioning_scale, list) and len(controlnet_conditioning_scale) != len(
|
|
self.controlnet.nets
|
|
):
|
|
raise ValueError(
|
|
"For multiple controlnets: When `controlnet_conditioning_scale` is specified as `list`, it must have"
|
|
" the same length as the number of controlnets"
|
|
)
|
|
else:
|
|
assert False
|
|
|
|
if not isinstance(control_guidance_start, (tuple, list)):
|
|
control_guidance_start = [control_guidance_start]
|
|
|
|
if not isinstance(control_guidance_end, (tuple, list)):
|
|
control_guidance_end = [control_guidance_end]
|
|
|
|
if len(control_guidance_start) != len(control_guidance_end):
|
|
raise ValueError(
|
|
f"`control_guidance_start` has {len(control_guidance_start)} elements, but `control_guidance_end` has {len(control_guidance_end)} elements. Make sure to provide the same number of elements to each list."
|
|
)
|
|
|
|
for start, end in zip(control_guidance_start, control_guidance_end):
|
|
if start >= end:
|
|
raise ValueError(
|
|
f"control guidance start: {start} cannot be larger or equal to control guidance end: {end}."
|
|
)
|
|
if start < 0.0:
|
|
raise ValueError(f"control guidance start: {start} can't be smaller than 0.")
|
|
if end > 1.0:
|
|
raise ValueError(f"control guidance end: {end} can't be larger than 1.0.")
|
|
|
|
# Copied from diffusers.pipelines.controlnet.pipeline_controlnet_sd_xl.StableDiffusionXLControlNetPipeline.check_image
|
|
def check_image(self, image, prompt):
|
|
image_is_pil = isinstance(image, Image.Image)
|
|
image_is_tensor = isinstance(image, torch.Tensor)
|
|
image_is_np = isinstance(image, np.ndarray)
|
|
image_is_pil_list = isinstance(image, list) and isinstance(image[0], Image.Image)
|
|
image_is_tensor_list = isinstance(image, list) and isinstance(image[0], torch.Tensor)
|
|
image_is_np_list = isinstance(image, list) and isinstance(image[0], np.ndarray)
|
|
|
|
if (
|
|
not image_is_pil
|
|
and not image_is_tensor
|
|
and not image_is_np
|
|
and not image_is_pil_list
|
|
and not image_is_tensor_list
|
|
and not image_is_np_list
|
|
):
|
|
raise TypeError(
|
|
f"image must be passed and be one of PIL image, numpy array, torch tensor, list of PIL images, list of numpy arrays or list of torch tensors, but is {type(image)}"
|
|
)
|
|
|
|
if image_is_pil:
|
|
image_batch_size = 1
|
|
else:
|
|
image_batch_size = len(image)
|
|
|
|
if prompt is not None and isinstance(prompt, str):
|
|
prompt_batch_size = 1
|
|
elif prompt is not None and isinstance(prompt, list):
|
|
prompt_batch_size = len(prompt)
|
|
|
|
if image_batch_size != 1 and image_batch_size != prompt_batch_size:
|
|
raise ValueError(
|
|
f"If image batch size is not 1, image batch size must be same as prompt batch size. image batch size: {image_batch_size}, prompt batch size: {prompt_batch_size}"
|
|
)
|
|
|
|
# Copied from diffusers.pipelines.controlnet.pipeline_controlnet_sd_xl.StableDiffusionXLControlNetPipeline.prepare_image
|
|
def prepare_control_image(
|
|
self,
|
|
image,
|
|
width,
|
|
height,
|
|
batch_size,
|
|
num_images_per_prompt,
|
|
device,
|
|
dtype,
|
|
do_classifier_free_guidance=False,
|
|
guess_mode=False,
|
|
):
|
|
image = self.control_image_processor.preprocess(image, height=height, width=width).to(dtype=torch.float32)
|
|
image_batch_size = image.shape[0]
|
|
|
|
if image_batch_size == 1:
|
|
repeat_by = batch_size
|
|
else:
|
|
# image batch size is the same as prompt batch size
|
|
repeat_by = num_images_per_prompt
|
|
|
|
image = image.repeat_interleave(repeat_by, dim=0)
|
|
|
|
image = image.to(device=device, dtype=dtype)
|
|
|
|
if do_classifier_free_guidance and not guess_mode:
|
|
image = torch.cat([image] * 2)
|
|
|
|
return image
|
|
|
|
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion_img2img.StableDiffusionImg2ImgPipeline.get_timesteps
|
|
def get_timesteps(self, num_inference_steps, strength):
|
|
# get the original timestep using init_timestep
|
|
init_timestep = min(int(num_inference_steps * strength), num_inference_steps)
|
|
|
|
t_start = max(num_inference_steps - init_timestep, 0)
|
|
timesteps = self.scheduler.timesteps[t_start * self.scheduler.order :]
|
|
if hasattr(self.scheduler, "set_begin_index"):
|
|
self.scheduler.set_begin_index(t_start * self.scheduler.order)
|
|
|
|
return timesteps, num_inference_steps - t_start
|
|
|
|
# Copied from diffusers.pipelines.stable_diffusion_xl.pipeline_stable_diffusion_xl_img2img.StableDiffusionXLImg2ImgPipeline.prepare_latents
|
|
def prepare_latents(
|
|
self, image, timestep, batch_size, num_images_per_prompt, dtype, device, generator=None, add_noise=True
|
|
):
|
|
if not isinstance(image, (torch.Tensor, Image.Image, list)):
|
|
raise ValueError(
|
|
f"`image` has to be of type `torch.Tensor`, `PIL.Image.Image` or list but is {type(image)}"
|
|
)
|
|
|
|
latents_mean = latents_std = None
|
|
if hasattr(self.vae.config, "latents_mean") and self.vae.config.latents_mean is not None:
|
|
latents_mean = torch.tensor(self.vae.config.latents_mean).view(1, 4, 1, 1)
|
|
if hasattr(self.vae.config, "latents_std") and self.vae.config.latents_std is not None:
|
|
latents_std = torch.tensor(self.vae.config.latents_std).view(1, 4, 1, 1)
|
|
|
|
# Offload text encoder if `enable_model_cpu_offload` was enabled
|
|
if hasattr(self, "final_offload_hook") and self.final_offload_hook is not None:
|
|
self.text_encoder_2.to("cpu")
|
|
torch.cuda.empty_cache()
|
|
|
|
image = image.to(device=device, dtype=dtype)
|
|
|
|
batch_size = batch_size * num_images_per_prompt
|
|
|
|
if image.shape[1] == 4:
|
|
init_latents = image
|
|
|
|
else:
|
|
# make sure the VAE is in float32 mode, as it overflows in float16
|
|
if self.vae.config.force_upcast:
|
|
image = image.float()
|
|
self.vae.to(dtype=torch.float32)
|
|
|
|
if isinstance(generator, list) and len(generator) != batch_size:
|
|
raise ValueError(
|
|
f"You have passed a list of generators of length {len(generator)}, but requested an effective batch"
|
|
f" size of {batch_size}. Make sure the batch size matches the length of the generators."
|
|
)
|
|
|
|
elif isinstance(generator, list):
|
|
if image.shape[0] < batch_size and batch_size % image.shape[0] == 0:
|
|
image = torch.cat([image] * (batch_size // image.shape[0]), dim=0)
|
|
elif image.shape[0] < batch_size and batch_size % image.shape[0] != 0:
|
|
raise ValueError(
|
|
f"Cannot duplicate `image` of batch size {image.shape[0]} to effective batch_size {batch_size} "
|
|
)
|
|
|
|
init_latents = [
|
|
retrieve_latents(self.vae.encode(image[i : i + 1]), generator=generator[i])
|
|
for i in range(batch_size)
|
|
]
|
|
init_latents = torch.cat(init_latents, dim=0)
|
|
else:
|
|
init_latents = retrieve_latents(self.vae.encode(image), generator=generator)
|
|
|
|
if self.vae.config.force_upcast:
|
|
self.vae.to(dtype)
|
|
|
|
init_latents = init_latents.to(dtype)
|
|
if latents_mean is not None and latents_std is not None:
|
|
latents_mean = latents_mean.to(device=device, dtype=dtype)
|
|
latents_std = latents_std.to(device=device, dtype=dtype)
|
|
init_latents = (init_latents - latents_mean) * self.vae.config.scaling_factor / latents_std
|
|
else:
|
|
init_latents = self.vae.config.scaling_factor * init_latents
|
|
|
|
if batch_size > init_latents.shape[0] and batch_size % init_latents.shape[0] == 0:
|
|
# expand init_latents for batch_size
|
|
additional_image_per_prompt = batch_size // init_latents.shape[0]
|
|
init_latents = torch.cat([init_latents] * additional_image_per_prompt, dim=0)
|
|
elif batch_size > init_latents.shape[0] and batch_size % init_latents.shape[0] != 0:
|
|
raise ValueError(
|
|
f"Cannot duplicate `image` of batch size {init_latents.shape[0]} to {batch_size} text prompts."
|
|
)
|
|
else:
|
|
init_latents = torch.cat([init_latents], dim=0)
|
|
|
|
if add_noise:
|
|
shape = init_latents.shape
|
|
noise = randn_tensor(shape, generator=generator, device=device, dtype=dtype)
|
|
# get latents
|
|
init_latents = self.scheduler.add_noise(init_latents, noise, timestep)
|
|
|
|
latents = init_latents
|
|
|
|
return latents
|
|
|
|
# Copied from diffusers.pipelines.stable_diffusion_xl.pipeline_stable_diffusion_xl_img2img.StableDiffusionXLImg2ImgPipeline._get_add_time_ids
|
|
def _get_add_time_ids(
|
|
self,
|
|
original_size,
|
|
crops_coords_top_left,
|
|
target_size,
|
|
aesthetic_score,
|
|
negative_aesthetic_score,
|
|
negative_original_size,
|
|
negative_crops_coords_top_left,
|
|
negative_target_size,
|
|
dtype,
|
|
text_encoder_projection_dim=None,
|
|
):
|
|
if self.config.requires_aesthetics_score:
|
|
add_time_ids = list(original_size + crops_coords_top_left + (aesthetic_score,))
|
|
add_neg_time_ids = list(
|
|
negative_original_size + negative_crops_coords_top_left + (negative_aesthetic_score,)
|
|
)
|
|
else:
|
|
add_time_ids = list(original_size + crops_coords_top_left + target_size)
|
|
add_neg_time_ids = list(negative_original_size + crops_coords_top_left + negative_target_size)
|
|
|
|
passed_add_embed_dim = (
|
|
self.unet.config.addition_time_embed_dim * len(add_time_ids) + text_encoder_projection_dim
|
|
)
|
|
expected_add_embed_dim = self.unet.add_embedding.linear_1.in_features
|
|
|
|
if (
|
|
expected_add_embed_dim > passed_add_embed_dim
|
|
and (expected_add_embed_dim - passed_add_embed_dim) == self.unet.config.addition_time_embed_dim
|
|
):
|
|
raise ValueError(
|
|
f"Model expects an added time embedding vector of length {expected_add_embed_dim}, but a vector of {passed_add_embed_dim} was created. Please make sure to enable `requires_aesthetics_score` with `pipe.register_to_config(requires_aesthetics_score=True)` to make sure `aesthetic_score` {aesthetic_score} and `negative_aesthetic_score` {negative_aesthetic_score} is correctly used by the model."
|
|
)
|
|
elif (
|
|
expected_add_embed_dim < passed_add_embed_dim
|
|
and (passed_add_embed_dim - expected_add_embed_dim) == self.unet.config.addition_time_embed_dim
|
|
):
|
|
raise ValueError(
|
|
f"Model expects an added time embedding vector of length {expected_add_embed_dim}, but a vector of {passed_add_embed_dim} was created. Please make sure to disable `requires_aesthetics_score` with `pipe.register_to_config(requires_aesthetics_score=False)` to make sure `target_size` {target_size} is correctly used by the model."
|
|
)
|
|
elif expected_add_embed_dim != passed_add_embed_dim:
|
|
raise ValueError(
|
|
f"Model expects an added time embedding vector of length {expected_add_embed_dim}, but a vector of {passed_add_embed_dim} was created. The model has an incorrect config. Please check `unet.config.time_embedding_type` and `text_encoder_2.config.projection_dim`."
|
|
)
|
|
|
|
add_time_ids = torch.tensor([add_time_ids], dtype=dtype)
|
|
add_neg_time_ids = torch.tensor([add_neg_time_ids], dtype=dtype)
|
|
|
|
return add_time_ids, add_neg_time_ids
|
|
|
|
def _generate_cosine_weights(self, tile_width, tile_height, nbatches, device, dtype):
|
|
"""
|
|
Generates cosine weights as a PyTorch tensor for blending tiles.
|
|
|
|
Args:
|
|
tile_width (int): Width of the tile in pixels.
|
|
tile_height (int): Height of the tile in pixels.
|
|
nbatches (int): Number of batches.
|
|
device (torch.device): Device where the tensor will be allocated (e.g., 'cuda' or 'cpu').
|
|
dtype (torch.dtype): Data type of the tensor (e.g., torch.float32).
|
|
|
|
Returns:
|
|
torch.Tensor: A tensor containing cosine weights for blending tiles, expanded to match batch and channel dimensions.
|
|
"""
|
|
# Convert tile dimensions to latent space
|
|
latent_width = tile_width // 8
|
|
latent_height = tile_height // 8
|
|
|
|
# Generate x and y coordinates in latent space
|
|
x = np.arange(0, latent_width)
|
|
y = np.arange(0, latent_height)
|
|
|
|
# Calculate midpoints
|
|
midpoint_x = (latent_width - 1) / 2
|
|
midpoint_y = (latent_height - 1) / 2
|
|
|
|
# Compute cosine probabilities for x and y
|
|
x_probs = np.cos(np.pi * (x - midpoint_x) / latent_width)
|
|
y_probs = np.cos(np.pi * (y - midpoint_y) / latent_height)
|
|
|
|
# Create a 2D weight matrix using the outer product
|
|
weights_np = np.outer(y_probs, x_probs)
|
|
|
|
# Convert to a PyTorch tensor with the correct device and dtype
|
|
weights_torch = torch.tensor(weights_np, device=device, dtype=dtype)
|
|
|
|
# Expand for batch and channel dimensions
|
|
tile_weights_expanded = torch.tile(weights_torch, (nbatches, self.unet.config.in_channels, 1, 1))
|
|
|
|
return tile_weights_expanded
|
|
|
|
def _generate_gaussian_weights(self, tile_width, tile_height, nbatches, device, dtype, sigma=0.05):
|
|
"""
|
|
Generates Gaussian weights as a PyTorch tensor for blending tiles in latent space.
|
|
|
|
Args:
|
|
tile_width (int): Width of the tile in pixels.
|
|
tile_height (int): Height of the tile in pixels.
|
|
nbatches (int): Number of batches.
|
|
device (torch.device): Device where the tensor will be allocated (e.g., 'cuda' or 'cpu').
|
|
dtype (torch.dtype): Data type of the tensor (e.g., torch.float32).
|
|
sigma (float, optional): Standard deviation of the Gaussian distribution. Controls the smoothness of the weights. Defaults to 0.05.
|
|
|
|
Returns:
|
|
torch.Tensor: A tensor containing Gaussian weights for blending tiles, expanded to match batch and channel dimensions.
|
|
"""
|
|
# Convert tile dimensions to latent space
|
|
latent_width = tile_width // 8
|
|
latent_height = tile_height // 8
|
|
|
|
# Generate Gaussian weights in latent space
|
|
x = np.linspace(-1, 1, latent_width)
|
|
y = np.linspace(-1, 1, latent_height)
|
|
xx, yy = np.meshgrid(x, y)
|
|
gaussian_weight = np.exp(-(xx**2 + yy**2) / (2 * sigma**2))
|
|
|
|
# Convert to a PyTorch tensor with the correct device and dtype
|
|
weights_torch = torch.tensor(gaussian_weight, device=device, dtype=dtype)
|
|
|
|
# Expand for batch and channel dimensions
|
|
weights_expanded = weights_torch.unsqueeze(0).unsqueeze(0) # Add batch and channel dimensions
|
|
weights_expanded = weights_expanded.expand(nbatches, -1, -1, -1) # Expand to the number of batches
|
|
|
|
return weights_expanded
|
|
|
|
def _get_num_tiles(self, height, width, tile_height, tile_width, normal_tile_overlap, border_tile_overlap):
|
|
"""
|
|
Calculates the number of tiles needed to cover an image, choosing the appropriate formula based on the
|
|
ratio between the image size and the tile size.
|
|
|
|
This function automatically selects between two formulas:
|
|
1. A universal formula for typical cases (image-to-tile ratio <= 6:1).
|
|
2. A specialized formula with border tile overlap for larger or atypical cases (image-to-tile ratio > 6:1).
|
|
|
|
Args:
|
|
height (int): Height of the image in pixels.
|
|
width (int): Width of the image in pixels.
|
|
tile_height (int): Height of each tile in pixels.
|
|
tile_width (int): Width of each tile in pixels.
|
|
normal_tile_overlap (int): Overlap between tiles in pixels for normal (non-border) tiles.
|
|
border_tile_overlap (int): Overlap between tiles in pixels for border tiles.
|
|
|
|
Returns:
|
|
tuple: A tuple containing:
|
|
- grid_rows (int): Number of rows in the tile grid.
|
|
- grid_cols (int): Number of columns in the tile grid.
|
|
|
|
Notes:
|
|
- The function uses the universal formula (without border_tile_overlap) for typical cases where the
|
|
image-to-tile ratio is 6:1 or smaller.
|
|
- For larger or atypical cases (image-to-tile ratio > 6:1), it uses a specialized formula that includes
|
|
border_tile_overlap to ensure complete coverage of the image, especially at the edges.
|
|
"""
|
|
# Calculate the ratio between the image size and the tile size
|
|
height_ratio = height / tile_height
|
|
width_ratio = width / tile_width
|
|
|
|
# If the ratio is greater than 6:1, use the formula with border_tile_overlap
|
|
if height_ratio > 6 or width_ratio > 6:
|
|
grid_rows = int(np.ceil((height - border_tile_overlap) / (tile_height - normal_tile_overlap))) + 1
|
|
grid_cols = int(np.ceil((width - border_tile_overlap) / (tile_width - normal_tile_overlap))) + 1
|
|
else:
|
|
# Otherwise, use the universal formula
|
|
grid_rows = int(np.ceil((height - normal_tile_overlap) / (tile_height - normal_tile_overlap)))
|
|
grid_cols = int(np.ceil((width - normal_tile_overlap) / (tile_width - normal_tile_overlap)))
|
|
|
|
return grid_rows, grid_cols
|
|
|
|
def prepare_tiles(
|
|
self,
|
|
grid_rows,
|
|
grid_cols,
|
|
tile_weighting_method,
|
|
tile_width,
|
|
tile_height,
|
|
normal_tile_overlap,
|
|
border_tile_overlap,
|
|
width,
|
|
height,
|
|
tile_sigma,
|
|
batch_size,
|
|
device,
|
|
dtype,
|
|
):
|
|
"""
|
|
Processes image tiles by dynamically adjusting overlap and calculating Gaussian or cosine weights.
|
|
|
|
Args:
|
|
grid_rows (int): Number of rows in the tile grid.
|
|
grid_cols (int): Number of columns in the tile grid.
|
|
tile_weighting_method (str): Method for weighting tiles. Options: "Gaussian" or "Cosine".
|
|
tile_width (int): Width of each tile in pixels.
|
|
tile_height (int): Height of each tile in pixels.
|
|
normal_tile_overlap (int): Overlap between tiles in pixels for normal tiles.
|
|
border_tile_overlap (int): Overlap between tiles in pixels for border tiles.
|
|
width (int): Width of the image in pixels.
|
|
height (int): Height of the image in pixels.
|
|
tile_sigma (float): Sigma parameter for Gaussian weighting.
|
|
batch_size (int): Batch size for weight tiles.
|
|
device (torch.device): Device where tensors will be allocated (e.g., 'cuda' or 'cpu').
|
|
dtype (torch.dtype): Data type of the tensors (e.g., torch.float32).
|
|
|
|
Returns:
|
|
tuple: A tuple containing:
|
|
- tile_weights (np.ndarray): Array of weights for each tile.
|
|
- tile_row_overlaps (np.ndarray): Array of row overlaps for each tile.
|
|
- tile_col_overlaps (np.ndarray): Array of column overlaps for each tile.
|
|
"""
|
|
|
|
# Create arrays to store dynamic overlaps and weights
|
|
tile_row_overlaps = np.full((grid_rows, grid_cols), normal_tile_overlap)
|
|
tile_col_overlaps = np.full((grid_rows, grid_cols), normal_tile_overlap)
|
|
tile_weights = np.empty((grid_rows, grid_cols), dtype=object) # Stores Gaussian or cosine weights
|
|
|
|
# Iterate over tiles to adjust overlap and calculate weights
|
|
for row in range(grid_rows):
|
|
for col in range(grid_cols):
|
|
# Calculate the size of the current tile
|
|
px_row_init, px_row_end, px_col_init, px_col_end = _tile2pixel_indices(
|
|
row, col, tile_width, tile_height, normal_tile_overlap, normal_tile_overlap, width, height
|
|
)
|
|
current_tile_width = px_col_end - px_col_init
|
|
current_tile_height = px_row_end - px_row_init
|
|
sigma = tile_sigma
|
|
|
|
# Adjust overlap for smaller tiles
|
|
if current_tile_width < tile_width:
|
|
px_row_init, px_row_end, px_col_init, px_col_end = _tile2pixel_indices(
|
|
row, col, tile_width, tile_height, border_tile_overlap, border_tile_overlap, width, height
|
|
)
|
|
current_tile_width = px_col_end - px_col_init
|
|
tile_col_overlaps[row, col] = border_tile_overlap
|
|
sigma = tile_sigma * 1.2
|
|
if current_tile_height < tile_height:
|
|
px_row_init, px_row_end, px_col_init, px_col_end = _tile2pixel_indices(
|
|
row, col, tile_width, tile_height, border_tile_overlap, border_tile_overlap, width, height
|
|
)
|
|
current_tile_height = px_row_end - px_row_init
|
|
tile_row_overlaps[row, col] = border_tile_overlap
|
|
sigma = tile_sigma * 1.2
|
|
|
|
# Calculate weights for the current tile
|
|
if tile_weighting_method == self.TileWeightingMethod.COSINE.value:
|
|
tile_weights[row, col] = self._generate_cosine_weights(
|
|
tile_width=current_tile_width,
|
|
tile_height=current_tile_height,
|
|
nbatches=batch_size,
|
|
device=device,
|
|
dtype=torch.float32,
|
|
)
|
|
else:
|
|
tile_weights[row, col] = self._generate_gaussian_weights(
|
|
tile_width=current_tile_width,
|
|
tile_height=current_tile_height,
|
|
nbatches=batch_size,
|
|
device=device,
|
|
dtype=dtype,
|
|
sigma=sigma,
|
|
)
|
|
|
|
return tile_weights, tile_row_overlaps, tile_col_overlaps
|
|
|
|
def upcast_vae(self):
|
|
deprecate("upcast_vae", "1.0.0", "`upcast_vae` is deprecated. Please use `pipe.vae.to(torch.float32)`")
|
|
self.vae.to(dtype=torch.float32)
|
|
|
|
@property
|
|
def guidance_scale(self):
|
|
return self._guidance_scale
|
|
|
|
@property
|
|
def clip_skip(self):
|
|
return self._clip_skip
|
|
|
|
# here `guidance_scale` is defined analog to the guidance weight `w` of equation (2)
|
|
# of the Imagen paper: https://huggingface.co/papers/2205.11487 . `guidance_scale = 1`
|
|
# corresponds to doing no classifier free guidance.
|
|
@property
|
|
def do_classifier_free_guidance(self):
|
|
return self._guidance_scale > 1
|
|
|
|
@property
|
|
def cross_attention_kwargs(self):
|
|
return self._cross_attention_kwargs
|
|
|
|
@property
|
|
def num_timesteps(self):
|
|
return self._num_timesteps
|
|
|
|
@property
|
|
def interrupt(self):
|
|
return self._interrupt
|
|
|
|
@torch.no_grad()
|
|
@replace_example_docstring(EXAMPLE_DOC_STRING)
|
|
def __call__(
|
|
self,
|
|
prompt: Union[str, List[str]] = None,
|
|
image: PipelineImageInput = None,
|
|
control_image: PipelineImageInput = None,
|
|
height: Optional[int] = None,
|
|
width: Optional[int] = None,
|
|
strength: float = 0.9999,
|
|
num_inference_steps: int = 50,
|
|
guidance_scale: float = 5.0,
|
|
negative_prompt: Optional[Union[str, List[str]]] = None,
|
|
num_images_per_prompt: Optional[int] = 1,
|
|
eta: float = 0.0,
|
|
generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
|
|
latents: Optional[torch.Tensor] = None,
|
|
output_type: Optional[str] = "pil",
|
|
return_dict: bool = True,
|
|
cross_attention_kwargs: Optional[Dict[str, Any]] = None,
|
|
controlnet_conditioning_scale: Union[float, List[float]] = 1.0,
|
|
guess_mode: bool = False,
|
|
control_guidance_start: Union[float, List[float]] = 0.0,
|
|
control_guidance_end: Union[float, List[float]] = 1.0,
|
|
control_mode: Optional[Union[int, List[int]]] = None,
|
|
original_size: Tuple[int, int] = None,
|
|
crops_coords_top_left: Tuple[int, int] = (0, 0),
|
|
target_size: Tuple[int, int] = None,
|
|
negative_original_size: Optional[Tuple[int, int]] = None,
|
|
negative_crops_coords_top_left: Tuple[int, int] = (0, 0),
|
|
negative_target_size: Optional[Tuple[int, int]] = None,
|
|
aesthetic_score: float = 6.0,
|
|
negative_aesthetic_score: float = 2.5,
|
|
clip_skip: Optional[int] = None,
|
|
normal_tile_overlap: int = 64,
|
|
border_tile_overlap: int = 128,
|
|
max_tile_size: int = 1024,
|
|
tile_gaussian_sigma: float = 0.05,
|
|
tile_weighting_method: str = "Cosine",
|
|
**kwargs,
|
|
):
|
|
r"""
|
|
Function invoked when calling the pipeline for generation.
|
|
|
|
Args:
|
|
prompt (`str` or `List[str]`, *optional*):
|
|
The prompt or prompts to guide the image generation. If not defined, one has to pass `prompt_embeds`.
|
|
image (`torch.Tensor`, `PIL.Image.Image`, `np.ndarray`, `List[torch.Tensor]`, `List[PIL.Image.Image]`, `List[np.ndarray]`, *optional*):
|
|
The initial image to be used as the starting point for the image generation process. Can also accept
|
|
image latents as `image`, if passing latents directly, they will not be encoded again.
|
|
control_image (`PipelineImageInput`, *optional*):
|
|
The ControlNet input condition. ControlNet uses this input condition to generate guidance for Unet.
|
|
If the type is specified as `torch.Tensor`, it is passed to ControlNet as is. `PIL.Image.Image` can also
|
|
be accepted as an image. The dimensions of the output image default to `image`'s dimensions. If height
|
|
and/or width are passed, `image` is resized accordingly. If multiple ControlNets are specified in
|
|
init, images must be passed as a list such that each element of the list can be correctly batched for
|
|
input to a single ControlNet.
|
|
height (`int`, *optional*):
|
|
The height in pixels of the generated image. If not provided, defaults to the height of `control_image`.
|
|
width (`int`, *optional*):
|
|
The width in pixels of the generated image. If not provided, defaults to the width of `control_image`.
|
|
strength (`float`, *optional*, defaults to 0.9999):
|
|
Indicates the extent to transform the reference `image`. Must be between 0 and 1. `image` is used as a
|
|
starting point, and more noise is added the higher the `strength`. The number of denoising steps depends
|
|
on the amount of noise initially added. When `strength` is 1, added noise is maximum, and the denoising
|
|
process runs for the full number of iterations specified in `num_inference_steps`.
|
|
num_inference_steps (`int`, *optional*, defaults to 50):
|
|
The number of denoising steps. More denoising steps usually lead to a higher quality image at the
|
|
expense of slower inference.
|
|
guidance_scale (`float`, *optional*, defaults to 5.0):
|
|
Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://huggingface.co/papers/2207.12598).
|
|
`guidance_scale` is defined as `w` of equation 2. of [Imagen Paper](https://huggingface.co/papers/2205.11487).
|
|
Guidance scale is enabled by setting `guidance_scale > 1`. Higher guidance scale encourages generating
|
|
images closely linked to the text `prompt`, usually at the expense of lower image quality.
|
|
negative_prompt (`str` or `List[str]`, *optional*):
|
|
The prompt or prompts not to guide the image generation. If not defined, one has to pass
|
|
`negative_prompt_embeds` instead. Ignored when not using guidance (i.e., ignored if `guidance_scale` is
|
|
less than `1`).
|
|
num_images_per_prompt (`int`, *optional*, defaults to 1):
|
|
The number of images to generate per prompt.
|
|
eta (`float`, *optional*, defaults to 0.0):
|
|
Corresponds to parameter eta (η) in the DDIM paper: https://huggingface.co/papers/2010.02502. Only applies to
|
|
[`schedulers.DDIMScheduler`], will be ignored for others.
|
|
generator (`torch.Generator` or `List[torch.Generator]`, *optional*):
|
|
One or a list of [torch generator(s)](https://pytorch.org/docs/stable/generated/torch.Generator.html)
|
|
to make generation deterministic.
|
|
latents (`torch.Tensor`, *optional*):
|
|
Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for image
|
|
generation. Can be used to tweak the same generation with different prompts. If not provided, a latents
|
|
tensor will be generated by sampling using the supplied random `generator`.
|
|
output_type (`str`, *optional*, defaults to `"pil"`):
|
|
The output format of the generated image. Choose between [PIL](https://pillow.readthedocs.io/en/stable/):
|
|
`PIL.Image.Image` or `np.array`.
|
|
return_dict (`bool`, *optional*, defaults to `True`):
|
|
Whether or not to return a [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] instead of a
|
|
plain tuple.
|
|
cross_attention_kwargs (`dict`, *optional*):
|
|
A kwargs dictionary that if specified is passed along to the `AttentionProcessor` as defined under
|
|
`self.processor` in
|
|
[diffusers.models.attention_processor](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py).
|
|
controlnet_conditioning_scale (`float` or `List[float]`, *optional*, defaults to 1.0):
|
|
The outputs of the ControlNet are multiplied by `controlnet_conditioning_scale` before they are added
|
|
to the residual in the original UNet. If multiple ControlNets are specified in init, you can set the
|
|
corresponding scale as a list.
|
|
guess_mode (`bool`, *optional*, defaults to `False`):
|
|
In this mode, the ControlNet encoder will try to recognize the content of the input image even if
|
|
you remove all prompts. The `guidance_scale` between 3.0 and 5.0 is recommended.
|
|
control_guidance_start (`float` or `List[float]`, *optional*, defaults to 0.0):
|
|
The percentage of total steps at which the ControlNet starts applying.
|
|
control_guidance_end (`float` or `List[float]`, *optional*, defaults to 1.0):
|
|
The percentage of total steps at which the ControlNet stops applying.
|
|
control_mode (`int` or `List[int]`, *optional*):
|
|
The mode of ControlNet guidance. Can be used to specify different behaviors for multiple ControlNets.
|
|
original_size (`Tuple[int, int]`, *optional*):
|
|
If `original_size` is not the same as `target_size`, the image will appear to be down- or upsampled.
|
|
`original_size` defaults to `(height, width)` if not specified. Part of SDXL's micro-conditioning.
|
|
crops_coords_top_left (`Tuple[int, int]`, *optional*, defaults to (0, 0)):
|
|
`crops_coords_top_left` can be used to generate an image that appears to be "cropped" from the position
|
|
`crops_coords_top_left` downwards. Favorable, well-centered images are usually achieved by setting
|
|
`crops_coords_top_left` to (0, 0). Part of SDXL's micro-conditioning.
|
|
target_size (`Tuple[int, int]`, *optional*):
|
|
For most cases, `target_size` should be set to the desired height and width of the generated image. If
|
|
not specified, it will default to `(height, width)`. Part of SDXL's micro-conditioning.
|
|
negative_original_size (`Tuple[int, int]`, *optional*):
|
|
To negatively condition the generation process based on a specific image resolution. Part of SDXL's
|
|
micro-conditioning.
|
|
negative_crops_coords_top_left (`Tuple[int, int]`, *optional*, defaults to (0, 0)):
|
|
To negatively condition the generation process based on a specific crop coordinates. Part of SDXL's
|
|
micro-conditioning.
|
|
negative_target_size (`Tuple[int, int]`, *optional*):
|
|
To negatively condition the generation process based on a target image resolution. It should be the same
|
|
as the `target_size` for most cases. Part of SDXL's micro-conditioning.
|
|
aesthetic_score (`float`, *optional*, defaults to 6.0):
|
|
Used to simulate an aesthetic score of the generated image by influencing the positive text condition.
|
|
Part of SDXL's micro-conditioning.
|
|
negative_aesthetic_score (`float`, *optional*, defaults to 2.5):
|
|
Used to simulate an aesthetic score of the generated image by influencing the negative text condition.
|
|
Part of SDXL's micro-conditioning.
|
|
clip_skip (`int`, *optional*):
|
|
Number of layers to be skipped from CLIP while computing the prompt embeddings. A value of 1 means that
|
|
the output of the pre-final layer will be used for computing the prompt embeddings.
|
|
normal_tile_overlap (`int`, *optional*, defaults to 64):
|
|
Number of overlapping pixels between tiles in consecutive rows.
|
|
border_tile_overlap (`int`, *optional*, defaults to 128):
|
|
Number of overlapping pixels between tiles at the borders.
|
|
max_tile_size (`int`, *optional*, defaults to 1024):
|
|
Maximum size of a tile in pixels.
|
|
tile_gaussian_sigma (`float`, *optional*, defaults to 0.3):
|
|
Sigma parameter for Gaussian weighting of tiles.
|
|
tile_weighting_method (`str`, *optional*, defaults to "Cosine"):
|
|
Method for weighting tiles. Options: "Cosine" or "Gaussian".
|
|
|
|
Examples:
|
|
|
|
Returns:
|
|
[`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] or `tuple`:
|
|
[`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] if `return_dict` is True, otherwise a `tuple`
|
|
containing the output images.
|
|
"""
|
|
|
|
controlnet = self.controlnet._orig_mod if is_compiled_module(self.controlnet) else self.controlnet
|
|
|
|
# align format for control guidance
|
|
if not isinstance(control_guidance_start, list) and isinstance(control_guidance_end, list):
|
|
control_guidance_start = len(control_guidance_end) * [control_guidance_start]
|
|
elif not isinstance(control_guidance_end, list) and isinstance(control_guidance_start, list):
|
|
control_guidance_end = len(control_guidance_start) * [control_guidance_end]
|
|
|
|
if not isinstance(control_image, list):
|
|
control_image = [control_image]
|
|
else:
|
|
control_image = control_image.copy()
|
|
|
|
if control_mode is None or isinstance(control_mode, list) and len(control_mode) == 0:
|
|
raise ValueError("The value for `control_mode` is expected!")
|
|
|
|
if not isinstance(control_mode, list):
|
|
control_mode = [control_mode]
|
|
|
|
if len(control_image) != len(control_mode):
|
|
raise ValueError("Expected len(control_image) == len(control_mode)")
|
|
|
|
num_control_type = controlnet.config.num_control_type
|
|
|
|
# 0. Set internal use parameters
|
|
height = height or self.unet.config.sample_size * self.vae_scale_factor
|
|
width = width or self.unet.config.sample_size * self.vae_scale_factor
|
|
original_size = original_size or (height, width)
|
|
target_size = target_size or (height, width)
|
|
negative_original_size = negative_original_size or original_size
|
|
negative_target_size = negative_target_size or target_size
|
|
control_type = [0 for _ in range(num_control_type)]
|
|
control_type = torch.Tensor(control_type)
|
|
self._guidance_scale = guidance_scale
|
|
self._clip_skip = clip_skip
|
|
self._cross_attention_kwargs = cross_attention_kwargs
|
|
self._interrupt = False
|
|
batch_size = 1
|
|
device = self._execution_device
|
|
global_pool_conditions = controlnet.config.global_pool_conditions
|
|
guess_mode = guess_mode or global_pool_conditions
|
|
|
|
# 1. Check inputs
|
|
for _image, control_idx in zip(control_image, control_mode):
|
|
control_type[control_idx] = 1
|
|
self.check_inputs(
|
|
prompt,
|
|
height,
|
|
width,
|
|
_image,
|
|
strength,
|
|
num_inference_steps,
|
|
normal_tile_overlap,
|
|
border_tile_overlap,
|
|
max_tile_size,
|
|
tile_gaussian_sigma,
|
|
tile_weighting_method,
|
|
controlnet_conditioning_scale,
|
|
control_guidance_start,
|
|
control_guidance_end,
|
|
)
|
|
|
|
# 2 Get tile width and tile height size
|
|
tile_width, tile_height = _adaptive_tile_size((width, height), max_tile_size=max_tile_size)
|
|
|
|
# 2.1 Calculate the number of tiles needed
|
|
grid_rows, grid_cols = self._get_num_tiles(
|
|
height, width, tile_height, tile_width, normal_tile_overlap, border_tile_overlap
|
|
)
|
|
|
|
# 2.2 Expand prompt to number of tiles
|
|
if not isinstance(prompt, list):
|
|
prompt = [[prompt] * grid_cols] * grid_rows
|
|
|
|
# 2.3 Update height and width tile size by tile size and tile overlap size
|
|
width = (grid_cols - 1) * (tile_width - normal_tile_overlap) + min(
|
|
tile_width, width - (grid_cols - 1) * (tile_width - normal_tile_overlap)
|
|
)
|
|
height = (grid_rows - 1) * (tile_height - normal_tile_overlap) + min(
|
|
tile_height, height - (grid_rows - 1) * (tile_height - normal_tile_overlap)
|
|
)
|
|
|
|
# 3. Encode input prompt
|
|
text_encoder_lora_scale = (
|
|
self.cross_attention_kwargs.get("scale", None) if self.cross_attention_kwargs is not None else None
|
|
)
|
|
text_embeddings = [
|
|
[
|
|
self.encode_prompt(
|
|
prompt=col,
|
|
device=device,
|
|
num_images_per_prompt=num_images_per_prompt,
|
|
do_classifier_free_guidance=self.do_classifier_free_guidance,
|
|
negative_prompt=negative_prompt,
|
|
prompt_embeds=None,
|
|
negative_prompt_embeds=None,
|
|
pooled_prompt_embeds=None,
|
|
negative_pooled_prompt_embeds=None,
|
|
lora_scale=text_encoder_lora_scale,
|
|
clip_skip=self.clip_skip,
|
|
)
|
|
for col in row
|
|
]
|
|
for row in prompt
|
|
]
|
|
|
|
# 4. Prepare latent image
|
|
image_tensor = self.image_processor.preprocess(image, height=height, width=width).to(dtype=torch.float32)
|
|
|
|
# 4.1 Prepare controlnet_conditioning_image
|
|
control_image = self.prepare_control_image(
|
|
image=image,
|
|
width=width,
|
|
height=height,
|
|
batch_size=batch_size * num_images_per_prompt,
|
|
num_images_per_prompt=num_images_per_prompt,
|
|
device=device,
|
|
dtype=controlnet.dtype,
|
|
do_classifier_free_guidance=self.do_classifier_free_guidance,
|
|
guess_mode=guess_mode,
|
|
)
|
|
control_type = (
|
|
control_type.reshape(1, -1)
|
|
.to(device, dtype=controlnet.dtype)
|
|
.repeat(batch_size * num_images_per_prompt * 2, 1)
|
|
)
|
|
|
|
# 5. Prepare timesteps
|
|
accepts_offset = "offset" in set(inspect.signature(self.scheduler.set_timesteps).parameters.keys())
|
|
extra_set_kwargs = {}
|
|
if accepts_offset:
|
|
extra_set_kwargs["offset"] = 1
|
|
self.scheduler.set_timesteps(num_inference_steps, device=device, **kwargs)
|
|
timesteps, num_inference_steps = self.get_timesteps(num_inference_steps, strength)
|
|
latent_timestep = timesteps[:1].repeat(batch_size * num_images_per_prompt)
|
|
self._num_timesteps = len(timesteps)
|
|
|
|
# 6. Prepare latent variables
|
|
dtype = text_embeddings[0][0][0].dtype
|
|
if latents is None:
|
|
latents = self.prepare_latents(
|
|
image_tensor,
|
|
latent_timestep,
|
|
batch_size,
|
|
num_images_per_prompt,
|
|
dtype,
|
|
device,
|
|
generator,
|
|
True,
|
|
)
|
|
|
|
# if we use LMSDiscreteScheduler, let's make sure latents are multiplied by sigmas
|
|
if isinstance(self.scheduler, LMSDiscreteScheduler):
|
|
latents = latents * self.scheduler.sigmas[0]
|
|
|
|
# 7. Prepare extra step kwargs. TODO: Logic should ideally just be moved out of the pipeline
|
|
extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta)
|
|
|
|
# 8. Create tensor stating which controlnets to keep
|
|
controlnet_keep = []
|
|
for i in range(len(timesteps)):
|
|
controlnet_keep.append(
|
|
1.0
|
|
- float(i / len(timesteps) < control_guidance_start or (i + 1) / len(timesteps) > control_guidance_end)
|
|
)
|
|
|
|
# 8.1 Prepare added time ids & embeddings
|
|
# text_embeddings order: prompt_embeds, negative_prompt_embeds, pooled_prompt_embeds, negative_pooled_prompt_embeds
|
|
embeddings_and_added_time = []
|
|
crops_coords_top_left = negative_crops_coords_top_left = (tile_width, tile_height)
|
|
for row in range(grid_rows):
|
|
addition_embed_type_row = []
|
|
for col in range(grid_cols):
|
|
# extract generated values
|
|
prompt_embeds = text_embeddings[row][col][0]
|
|
negative_prompt_embeds = text_embeddings[row][col][1]
|
|
pooled_prompt_embeds = text_embeddings[row][col][2]
|
|
negative_pooled_prompt_embeds = text_embeddings[row][col][3]
|
|
|
|
if negative_original_size is None:
|
|
negative_original_size = original_size
|
|
if negative_target_size is None:
|
|
negative_target_size = target_size
|
|
add_text_embeds = pooled_prompt_embeds
|
|
|
|
if self.text_encoder_2 is None:
|
|
text_encoder_projection_dim = int(pooled_prompt_embeds.shape[-1])
|
|
else:
|
|
text_encoder_projection_dim = self.text_encoder_2.config.projection_dim
|
|
|
|
add_time_ids, add_neg_time_ids = self._get_add_time_ids(
|
|
original_size,
|
|
crops_coords_top_left,
|
|
target_size,
|
|
aesthetic_score,
|
|
negative_aesthetic_score,
|
|
negative_original_size,
|
|
negative_crops_coords_top_left,
|
|
negative_target_size,
|
|
dtype=prompt_embeds.dtype,
|
|
text_encoder_projection_dim=text_encoder_projection_dim,
|
|
)
|
|
add_time_ids = add_time_ids.repeat(batch_size * num_images_per_prompt, 1)
|
|
|
|
if self.do_classifier_free_guidance:
|
|
prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds], dim=0)
|
|
add_text_embeds = torch.cat([negative_pooled_prompt_embeds, add_text_embeds], dim=0)
|
|
add_neg_time_ids = add_neg_time_ids.repeat(batch_size * num_images_per_prompt, 1)
|
|
add_time_ids = torch.cat([add_neg_time_ids, add_time_ids], dim=0)
|
|
|
|
prompt_embeds = prompt_embeds.to(device)
|
|
add_text_embeds = add_text_embeds.to(device)
|
|
add_time_ids = add_time_ids.to(device)
|
|
addition_embed_type_row.append((prompt_embeds, add_text_embeds, add_time_ids))
|
|
|
|
embeddings_and_added_time.append(addition_embed_type_row)
|
|
|
|
# 9. Prepare tiles weights and latent overlaps size to denoising process
|
|
tile_weights, tile_row_overlaps, tile_col_overlaps = self.prepare_tiles(
|
|
grid_rows,
|
|
grid_cols,
|
|
tile_weighting_method,
|
|
tile_width,
|
|
tile_height,
|
|
normal_tile_overlap,
|
|
border_tile_overlap,
|
|
width,
|
|
height,
|
|
tile_gaussian_sigma,
|
|
batch_size,
|
|
device,
|
|
dtype,
|
|
)
|
|
|
|
# 10. Denoising loop
|
|
num_warmup_steps = max(len(timesteps) - num_inference_steps * self.scheduler.order, 0)
|
|
with self.progress_bar(total=num_inference_steps) as progress_bar:
|
|
for i, t in enumerate(timesteps):
|
|
# Diffuse each tile
|
|
noise_preds = []
|
|
for row in range(grid_rows):
|
|
noise_preds_row = []
|
|
for col in range(grid_cols):
|
|
if self.interrupt:
|
|
continue
|
|
tile_row_overlap = tile_row_overlaps[row, col]
|
|
tile_col_overlap = tile_col_overlaps[row, col]
|
|
|
|
px_row_init, px_row_end, px_col_init, px_col_end = _tile2latent_indices(
|
|
row, col, tile_width, tile_height, tile_row_overlap, tile_col_overlap, width, height
|
|
)
|
|
|
|
tile_latents = latents[:, :, px_row_init:px_row_end, px_col_init:px_col_end]
|
|
|
|
# expand the latents if we are doing classifier free guidance
|
|
latent_model_input = (
|
|
torch.cat([tile_latents] * 2)
|
|
if self.do_classifier_free_guidance
|
|
else tile_latents # 1, 4, ...
|
|
)
|
|
latent_model_input = self.scheduler.scale_model_input(latent_model_input, t)
|
|
|
|
# predict the noise residual
|
|
added_cond_kwargs = {
|
|
"text_embeds": embeddings_and_added_time[row][col][1],
|
|
"time_ids": embeddings_and_added_time[row][col][2],
|
|
}
|
|
|
|
# controlnet(s) inference
|
|
if guess_mode and self.do_classifier_free_guidance:
|
|
# Infer ControlNet only for the conditional batch.
|
|
control_model_input = tile_latents
|
|
control_model_input = self.scheduler.scale_model_input(control_model_input, t)
|
|
controlnet_prompt_embeds = embeddings_and_added_time[row][col][0].chunk(2)[1]
|
|
controlnet_added_cond_kwargs = {
|
|
"text_embeds": embeddings_and_added_time[row][col][1].chunk(2)[1],
|
|
"time_ids": embeddings_and_added_time[row][col][2].chunk(2)[1],
|
|
}
|
|
else:
|
|
control_model_input = latent_model_input
|
|
controlnet_prompt_embeds = embeddings_and_added_time[row][col][0]
|
|
controlnet_added_cond_kwargs = added_cond_kwargs
|
|
|
|
if isinstance(controlnet_keep[i], list):
|
|
cond_scale = [c * s for c, s in zip(controlnet_conditioning_scale, controlnet_keep[i])]
|
|
else:
|
|
controlnet_cond_scale = controlnet_conditioning_scale
|
|
if isinstance(controlnet_cond_scale, list):
|
|
controlnet_cond_scale = controlnet_cond_scale[0]
|
|
cond_scale = controlnet_cond_scale * controlnet_keep[i]
|
|
|
|
px_row_init_pixel, px_row_end_pixel, px_col_init_pixel, px_col_end_pixel = _tile2pixel_indices(
|
|
row, col, tile_width, tile_height, tile_row_overlap, tile_col_overlap, width, height
|
|
)
|
|
|
|
tile_control_image = control_image[
|
|
:, :, px_row_init_pixel:px_row_end_pixel, px_col_init_pixel:px_col_end_pixel
|
|
]
|
|
|
|
down_block_res_samples, mid_block_res_sample = self.controlnet(
|
|
control_model_input,
|
|
t,
|
|
encoder_hidden_states=controlnet_prompt_embeds,
|
|
controlnet_cond=[tile_control_image],
|
|
control_type=control_type,
|
|
control_type_idx=control_mode,
|
|
conditioning_scale=cond_scale,
|
|
guess_mode=guess_mode,
|
|
added_cond_kwargs=controlnet_added_cond_kwargs,
|
|
return_dict=False,
|
|
)
|
|
|
|
if guess_mode and self.do_classifier_free_guidance:
|
|
# Inferred ControlNet only for the conditional batch.
|
|
# To apply the output of ControlNet to both the unconditional and conditional batches,
|
|
# add 0 to the unconditional batch to keep it unchanged.
|
|
down_block_res_samples = [
|
|
torch.cat([torch.zeros_like(d), d]) for d in down_block_res_samples
|
|
]
|
|
mid_block_res_sample = torch.cat(
|
|
[torch.zeros_like(mid_block_res_sample), mid_block_res_sample]
|
|
)
|
|
|
|
# predict the noise residual
|
|
with torch.amp.autocast(device.type, dtype=dtype, enabled=dtype != self.unet.dtype):
|
|
noise_pred = self.unet(
|
|
latent_model_input,
|
|
t,
|
|
encoder_hidden_states=embeddings_and_added_time[row][col][0],
|
|
cross_attention_kwargs=self.cross_attention_kwargs,
|
|
down_block_additional_residuals=down_block_res_samples,
|
|
mid_block_additional_residual=mid_block_res_sample,
|
|
added_cond_kwargs=added_cond_kwargs,
|
|
return_dict=False,
|
|
)[0]
|
|
|
|
# perform guidance
|
|
if self.do_classifier_free_guidance:
|
|
noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
|
|
noise_pred_tile = noise_pred_uncond + guidance_scale * (
|
|
noise_pred_text - noise_pred_uncond
|
|
)
|
|
noise_preds_row.append(noise_pred_tile)
|
|
noise_preds.append(noise_preds_row)
|
|
|
|
# Stitch noise predictions for all tiles
|
|
noise_pred = torch.zeros(latents.shape, device=device)
|
|
contributors = torch.zeros(latents.shape, device=device)
|
|
|
|
# Add each tile contribution to overall latents
|
|
for row in range(grid_rows):
|
|
for col in range(grid_cols):
|
|
tile_row_overlap = tile_row_overlaps[row, col]
|
|
tile_col_overlap = tile_col_overlaps[row, col]
|
|
px_row_init, px_row_end, px_col_init, px_col_end = _tile2latent_indices(
|
|
row, col, tile_width, tile_height, tile_row_overlap, tile_col_overlap, width, height
|
|
)
|
|
tile_weights_resized = tile_weights[row, col]
|
|
|
|
noise_pred[:, :, px_row_init:px_row_end, px_col_init:px_col_end] += (
|
|
noise_preds[row][col] * tile_weights_resized
|
|
)
|
|
contributors[:, :, px_row_init:px_row_end, px_col_init:px_col_end] += tile_weights_resized
|
|
|
|
# Average overlapping areas with more than 1 contributor
|
|
noise_pred /= contributors
|
|
noise_pred = noise_pred.to(dtype)
|
|
|
|
# compute the previous noisy sample x_t -> x_t-1
|
|
latents_dtype = latents.dtype
|
|
latents = self.scheduler.step(noise_pred, t, latents, **extra_step_kwargs, return_dict=False)[0]
|
|
if latents.dtype != latents_dtype:
|
|
if torch.backends.mps.is_available():
|
|
# some platforms (eg. apple mps) misbehave due to a pytorch bug: https://github.com/pytorch/pytorch/pull/99272
|
|
latents = latents.to(latents_dtype)
|
|
|
|
# update progress bar
|
|
if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0):
|
|
progress_bar.update()
|
|
|
|
if XLA_AVAILABLE:
|
|
xm.mark_step()
|
|
|
|
# If we do sequential model offloading, let's offload unet and controlnet
|
|
# manually for max memory savings
|
|
if hasattr(self, "final_offload_hook") and self.final_offload_hook is not None:
|
|
self.unet.to("cpu")
|
|
self.controlnet.to("cpu")
|
|
torch.cuda.empty_cache()
|
|
|
|
if not output_type == "latent":
|
|
# make sure the VAE is in float32 mode, as it overflows in float16
|
|
needs_upcasting = self.vae.dtype == torch.float16 and self.vae.config.force_upcast
|
|
|
|
if needs_upcasting:
|
|
self.upcast_vae()
|
|
latents = latents.to(next(iter(self.vae.post_quant_conv.parameters())).dtype)
|
|
|
|
# unscale/denormalize the latents
|
|
# denormalize with the mean and std if available and not None
|
|
has_latents_mean = hasattr(self.vae.config, "latents_mean") and self.vae.config.latents_mean is not None
|
|
has_latents_std = hasattr(self.vae.config, "latents_std") and self.vae.config.latents_std is not None
|
|
if has_latents_mean and has_latents_std:
|
|
latents_mean = (
|
|
torch.tensor(self.vae.config.latents_mean).view(1, 4, 1, 1).to(latents.device, latents.dtype)
|
|
)
|
|
latents_std = (
|
|
torch.tensor(self.vae.config.latents_std).view(1, 4, 1, 1).to(latents.device, latents.dtype)
|
|
)
|
|
latents = latents * latents_std / self.vae.config.scaling_factor + latents_mean
|
|
else:
|
|
latents = latents / self.vae.config.scaling_factor
|
|
|
|
image = self.vae.decode(latents, return_dict=False)[0]
|
|
|
|
# cast back to fp16 if needed
|
|
if needs_upcasting:
|
|
self.vae.to(dtype=torch.float16)
|
|
|
|
# apply watermark if available
|
|
if self.watermark is not None:
|
|
image = self.watermark.apply_watermark(image)
|
|
|
|
image = self.image_processor.postprocess(image, output_type=output_type)
|
|
else:
|
|
image = latents
|
|
|
|
# Offload all models
|
|
self.maybe_free_model_hooks()
|
|
|
|
result = StableDiffusionXLPipelineOutput(images=image)
|
|
if not return_dict:
|
|
return (image,)
|
|
|
|
return result
|