mirror of
https://github.com/huggingface/diffusers.git
synced 2026-01-27 17:22:53 +03:00
* update
* update
* update
* update
* update
* merge main
* Revert "merge main"
This reverts commit 65efbcead5.
294 lines
11 KiB
Python
294 lines
11 KiB
Python
# coding=utf-8
|
|
# Copyright 2025 HuggingFace Inc.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
|
|
import gc
|
|
import random
|
|
import unittest
|
|
|
|
import numpy as np
|
|
import torch
|
|
from PIL import Image
|
|
from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer
|
|
|
|
from diffusers import AutoencoderKL, PNDMScheduler, StableDiffusionInpaintPipeline, UNet2DConditionModel
|
|
|
|
from ...testing_utils import (
|
|
backend_empty_cache,
|
|
backend_max_memory_allocated,
|
|
backend_reset_max_memory_allocated,
|
|
backend_reset_peak_memory_stats,
|
|
enable_full_determinism,
|
|
floats_tensor,
|
|
load_image,
|
|
load_numpy,
|
|
require_torch_accelerator,
|
|
slow,
|
|
torch_device,
|
|
)
|
|
from ..pipeline_params import (
|
|
TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS,
|
|
TEXT_GUIDED_IMAGE_INPAINTING_PARAMS,
|
|
TEXT_TO_IMAGE_CALLBACK_CFG_PARAMS,
|
|
)
|
|
from ..test_pipelines_common import PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin
|
|
|
|
|
|
enable_full_determinism()
|
|
|
|
|
|
class StableDiffusion2InpaintPipelineFastTests(
|
|
PipelineLatentTesterMixin, PipelineKarrasSchedulerTesterMixin, PipelineTesterMixin, unittest.TestCase
|
|
):
|
|
pipeline_class = StableDiffusionInpaintPipeline
|
|
params = TEXT_GUIDED_IMAGE_INPAINTING_PARAMS
|
|
batch_params = TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS
|
|
image_params = frozenset(
|
|
[]
|
|
) # TO-DO: update image_params once pipeline is refactored with VaeImageProcessor.preprocess
|
|
image_latents_params = frozenset([])
|
|
callback_cfg_params = TEXT_TO_IMAGE_CALLBACK_CFG_PARAMS.union({"mask", "masked_image_latents"})
|
|
|
|
def get_dummy_components(self):
|
|
torch.manual_seed(0)
|
|
unet = UNet2DConditionModel(
|
|
block_out_channels=(32, 64),
|
|
layers_per_block=2,
|
|
sample_size=32,
|
|
in_channels=9,
|
|
out_channels=4,
|
|
down_block_types=("DownBlock2D", "CrossAttnDownBlock2D"),
|
|
up_block_types=("CrossAttnUpBlock2D", "UpBlock2D"),
|
|
cross_attention_dim=32,
|
|
# SD2-specific config below
|
|
attention_head_dim=(2, 4),
|
|
use_linear_projection=True,
|
|
)
|
|
scheduler = PNDMScheduler(skip_prk_steps=True)
|
|
torch.manual_seed(0)
|
|
vae = AutoencoderKL(
|
|
block_out_channels=[32, 64],
|
|
in_channels=3,
|
|
out_channels=3,
|
|
down_block_types=["DownEncoderBlock2D", "DownEncoderBlock2D"],
|
|
up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D"],
|
|
latent_channels=4,
|
|
sample_size=128,
|
|
)
|
|
torch.manual_seed(0)
|
|
text_encoder_config = CLIPTextConfig(
|
|
bos_token_id=0,
|
|
eos_token_id=2,
|
|
hidden_size=32,
|
|
intermediate_size=37,
|
|
layer_norm_eps=1e-05,
|
|
num_attention_heads=4,
|
|
num_hidden_layers=5,
|
|
pad_token_id=1,
|
|
vocab_size=1000,
|
|
# SD2-specific config below
|
|
hidden_act="gelu",
|
|
projection_dim=512,
|
|
)
|
|
text_encoder = CLIPTextModel(text_encoder_config)
|
|
tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip")
|
|
|
|
components = {
|
|
"unet": unet,
|
|
"scheduler": scheduler,
|
|
"vae": vae,
|
|
"text_encoder": text_encoder,
|
|
"tokenizer": tokenizer,
|
|
"safety_checker": None,
|
|
"feature_extractor": None,
|
|
"image_encoder": None,
|
|
}
|
|
return components
|
|
|
|
def get_dummy_inputs(self, device, seed=0):
|
|
# TODO: use tensor inputs instead of PIL, this is here just to leave the old expected_slices untouched
|
|
image = floats_tensor((1, 3, 32, 32), rng=random.Random(seed)).to(device)
|
|
image = image.cpu().permute(0, 2, 3, 1)[0]
|
|
init_image = Image.fromarray(np.uint8(image)).convert("RGB").resize((64, 64))
|
|
mask_image = Image.fromarray(np.uint8(image + 4)).convert("RGB").resize((64, 64))
|
|
if str(device).startswith("mps"):
|
|
generator = torch.manual_seed(seed)
|
|
else:
|
|
generator = torch.Generator(device=device).manual_seed(seed)
|
|
inputs = {
|
|
"prompt": "A painting of a squirrel eating a burger",
|
|
"image": init_image,
|
|
"mask_image": mask_image,
|
|
"generator": generator,
|
|
"num_inference_steps": 2,
|
|
"guidance_scale": 6.0,
|
|
"output_type": "np",
|
|
}
|
|
return inputs
|
|
|
|
def test_stable_diffusion_inpaint(self):
|
|
device = "cpu" # ensure determinism for the device-dependent torch.Generator
|
|
components = self.get_dummy_components()
|
|
sd_pipe = StableDiffusionInpaintPipeline(**components)
|
|
sd_pipe = sd_pipe.to(device)
|
|
sd_pipe.set_progress_bar_config(disable=None)
|
|
|
|
inputs = self.get_dummy_inputs(device)
|
|
image = sd_pipe(**inputs).images
|
|
image_slice = image[0, -3:, -3:, -1]
|
|
|
|
assert image.shape == (1, 64, 64, 3)
|
|
expected_slice = np.array([0.4727, 0.5735, 0.3941, 0.5446, 0.5926, 0.4394, 0.5062, 0.4654, 0.4476])
|
|
|
|
assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2
|
|
|
|
def test_inference_batch_single_identical(self):
|
|
super().test_inference_batch_single_identical(expected_max_diff=3e-3)
|
|
|
|
def test_encode_prompt_works_in_isolation(self):
|
|
extra_required_param_value_dict = {
|
|
"device": torch.device(torch_device).type,
|
|
"do_classifier_free_guidance": self.get_dummy_inputs(device=torch_device).get("guidance_scale", 1.0) > 1.0,
|
|
}
|
|
return super().test_encode_prompt_works_in_isolation(extra_required_param_value_dict)
|
|
|
|
|
|
@slow
|
|
@require_torch_accelerator
|
|
class StableDiffusionInpaintPipelineIntegrationTests(unittest.TestCase):
|
|
def setUp(self):
|
|
# clean up the VRAM before each test
|
|
super().setUp()
|
|
gc.collect()
|
|
backend_empty_cache(torch_device)
|
|
|
|
def tearDown(self):
|
|
# clean up the VRAM after each test
|
|
super().tearDown()
|
|
gc.collect()
|
|
backend_empty_cache(torch_device)
|
|
|
|
def test_stable_diffusion_inpaint_pipeline(self):
|
|
init_image = load_image(
|
|
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main"
|
|
"/sd2-inpaint/init_image.png"
|
|
)
|
|
mask_image = load_image(
|
|
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint/mask.png"
|
|
)
|
|
expected_image = load_numpy(
|
|
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint"
|
|
"/yellow_cat_sitting_on_a_park_bench.npy"
|
|
)
|
|
|
|
model_id = "stabilityai/stable-diffusion-2-inpainting"
|
|
pipe = StableDiffusionInpaintPipeline.from_pretrained(model_id, safety_checker=None)
|
|
pipe.to(torch_device)
|
|
pipe.set_progress_bar_config(disable=None)
|
|
pipe.enable_attention_slicing()
|
|
|
|
prompt = "Face of a yellow cat, high resolution, sitting on a park bench"
|
|
|
|
generator = torch.manual_seed(0)
|
|
output = pipe(
|
|
prompt=prompt,
|
|
image=init_image,
|
|
mask_image=mask_image,
|
|
generator=generator,
|
|
output_type="np",
|
|
)
|
|
image = output.images[0]
|
|
|
|
assert image.shape == (512, 512, 3)
|
|
assert np.abs(expected_image - image).max() < 9e-3
|
|
|
|
def test_stable_diffusion_inpaint_pipeline_fp16(self):
|
|
init_image = load_image(
|
|
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main"
|
|
"/sd2-inpaint/init_image.png"
|
|
)
|
|
mask_image = load_image(
|
|
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint/mask.png"
|
|
)
|
|
expected_image = load_numpy(
|
|
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint"
|
|
"/yellow_cat_sitting_on_a_park_bench_fp16.npy"
|
|
)
|
|
|
|
model_id = "stabilityai/stable-diffusion-2-inpainting"
|
|
pipe = StableDiffusionInpaintPipeline.from_pretrained(
|
|
model_id,
|
|
torch_dtype=torch.float16,
|
|
safety_checker=None,
|
|
)
|
|
pipe.to(torch_device)
|
|
pipe.set_progress_bar_config(disable=None)
|
|
pipe.enable_attention_slicing()
|
|
|
|
prompt = "Face of a yellow cat, high resolution, sitting on a park bench"
|
|
|
|
generator = torch.manual_seed(0)
|
|
output = pipe(
|
|
prompt=prompt,
|
|
image=init_image,
|
|
mask_image=mask_image,
|
|
generator=generator,
|
|
output_type="np",
|
|
)
|
|
image = output.images[0]
|
|
|
|
assert image.shape == (512, 512, 3)
|
|
assert np.abs(expected_image - image).max() < 5e-1
|
|
|
|
def test_stable_diffusion_pipeline_with_sequential_cpu_offloading(self):
|
|
backend_empty_cache(torch_device)
|
|
backend_reset_max_memory_allocated(torch_device)
|
|
backend_reset_peak_memory_stats(torch_device)
|
|
|
|
init_image = load_image(
|
|
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main"
|
|
"/sd2-inpaint/init_image.png"
|
|
)
|
|
mask_image = load_image(
|
|
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint/mask.png"
|
|
)
|
|
|
|
model_id = "stabilityai/stable-diffusion-2-inpainting"
|
|
pndm = PNDMScheduler.from_pretrained(model_id, subfolder="scheduler")
|
|
pipe = StableDiffusionInpaintPipeline.from_pretrained(
|
|
model_id,
|
|
safety_checker=None,
|
|
scheduler=pndm,
|
|
torch_dtype=torch.float16,
|
|
)
|
|
pipe.set_progress_bar_config(disable=None)
|
|
pipe.enable_attention_slicing(1)
|
|
pipe.enable_sequential_cpu_offload(device=torch_device)
|
|
|
|
prompt = "Face of a yellow cat, high resolution, sitting on a park bench"
|
|
|
|
generator = torch.manual_seed(0)
|
|
_ = pipe(
|
|
prompt=prompt,
|
|
image=init_image,
|
|
mask_image=mask_image,
|
|
generator=generator,
|
|
num_inference_steps=2,
|
|
output_type="np",
|
|
)
|
|
|
|
mem_bytes = backend_max_memory_allocated(torch_device)
|
|
# make sure that less than 2.65 GB is allocated
|
|
assert mem_bytes < 2.65 * 10**9
|