mirror of
https://github.com/huggingface/diffusers.git
synced 2026-01-27 17:22:53 +03:00
* update
* update
* update
* update
* update
* merge main
* Revert "merge main"
This reverts commit 65efbcead5.
320 lines
12 KiB
Python
320 lines
12 KiB
Python
# coding=utf-8
|
|
# Copyright 2025 HuggingFace Inc.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
|
|
import copy
|
|
import os
|
|
import tempfile
|
|
import unittest
|
|
|
|
import numpy as np
|
|
import torch
|
|
|
|
from diffusers import MotionAdapter, UNet2DConditionModel, UNetMotionModel
|
|
from diffusers.utils import logging
|
|
from diffusers.utils.import_utils import is_xformers_available
|
|
|
|
from ...testing_utils import (
|
|
enable_full_determinism,
|
|
floats_tensor,
|
|
torch_device,
|
|
)
|
|
from ..test_modeling_common import ModelTesterMixin, UNetTesterMixin
|
|
|
|
|
|
logger = logging.get_logger(__name__)
|
|
|
|
enable_full_determinism()
|
|
|
|
|
|
class UNetMotionModelTests(ModelTesterMixin, UNetTesterMixin, unittest.TestCase):
|
|
model_class = UNetMotionModel
|
|
main_input_name = "sample"
|
|
|
|
@property
|
|
def dummy_input(self):
|
|
batch_size = 4
|
|
num_channels = 4
|
|
num_frames = 4
|
|
sizes = (16, 16)
|
|
|
|
noise = floats_tensor((batch_size, num_channels, num_frames) + sizes).to(torch_device)
|
|
time_step = torch.tensor([10]).to(torch_device)
|
|
encoder_hidden_states = floats_tensor((batch_size * num_frames, 4, 16)).to(torch_device)
|
|
|
|
return {"sample": noise, "timestep": time_step, "encoder_hidden_states": encoder_hidden_states}
|
|
|
|
@property
|
|
def input_shape(self):
|
|
return (4, 4, 16, 16)
|
|
|
|
@property
|
|
def output_shape(self):
|
|
return (4, 4, 16, 16)
|
|
|
|
def prepare_init_args_and_inputs_for_common(self):
|
|
init_dict = {
|
|
"block_out_channels": (16, 32),
|
|
"norm_num_groups": 16,
|
|
"down_block_types": ("CrossAttnDownBlockMotion", "DownBlockMotion"),
|
|
"up_block_types": ("UpBlockMotion", "CrossAttnUpBlockMotion"),
|
|
"cross_attention_dim": 16,
|
|
"num_attention_heads": 2,
|
|
"out_channels": 4,
|
|
"in_channels": 4,
|
|
"layers_per_block": 1,
|
|
"sample_size": 16,
|
|
}
|
|
inputs_dict = self.dummy_input
|
|
return init_dict, inputs_dict
|
|
|
|
def test_from_unet2d(self):
|
|
torch.manual_seed(0)
|
|
unet2d = UNet2DConditionModel()
|
|
|
|
torch.manual_seed(1)
|
|
model = self.model_class.from_unet2d(unet2d)
|
|
model_state_dict = model.state_dict()
|
|
|
|
for param_name, param_value in unet2d.named_parameters():
|
|
self.assertTrue(torch.equal(model_state_dict[param_name], param_value))
|
|
|
|
def test_freeze_unet2d(self):
|
|
init_dict, inputs_dict = self.prepare_init_args_and_inputs_for_common()
|
|
model = self.model_class(**init_dict)
|
|
model.freeze_unet2d_params()
|
|
|
|
for param_name, param_value in model.named_parameters():
|
|
if "motion_modules" not in param_name:
|
|
self.assertFalse(param_value.requires_grad)
|
|
|
|
else:
|
|
self.assertTrue(param_value.requires_grad)
|
|
|
|
def test_loading_motion_adapter(self):
|
|
model = self.model_class()
|
|
adapter = MotionAdapter()
|
|
model.load_motion_modules(adapter)
|
|
|
|
for idx, down_block in enumerate(model.down_blocks):
|
|
adapter_state_dict = adapter.down_blocks[idx].motion_modules.state_dict()
|
|
for param_name, param_value in down_block.motion_modules.named_parameters():
|
|
self.assertTrue(torch.equal(adapter_state_dict[param_name], param_value))
|
|
|
|
for idx, up_block in enumerate(model.up_blocks):
|
|
adapter_state_dict = adapter.up_blocks[idx].motion_modules.state_dict()
|
|
for param_name, param_value in up_block.motion_modules.named_parameters():
|
|
self.assertTrue(torch.equal(adapter_state_dict[param_name], param_value))
|
|
|
|
mid_block_adapter_state_dict = adapter.mid_block.motion_modules.state_dict()
|
|
for param_name, param_value in model.mid_block.motion_modules.named_parameters():
|
|
self.assertTrue(torch.equal(mid_block_adapter_state_dict[param_name], param_value))
|
|
|
|
def test_saving_motion_modules(self):
|
|
torch.manual_seed(0)
|
|
init_dict, inputs_dict = self.prepare_init_args_and_inputs_for_common()
|
|
model = self.model_class(**init_dict)
|
|
model.to(torch_device)
|
|
|
|
with tempfile.TemporaryDirectory() as tmpdirname:
|
|
model.save_motion_modules(tmpdirname)
|
|
self.assertTrue(os.path.isfile(os.path.join(tmpdirname, "diffusion_pytorch_model.safetensors")))
|
|
|
|
adapter_loaded = MotionAdapter.from_pretrained(tmpdirname)
|
|
|
|
torch.manual_seed(0)
|
|
model_loaded = self.model_class(**init_dict)
|
|
model_loaded.load_motion_modules(adapter_loaded)
|
|
model_loaded.to(torch_device)
|
|
|
|
with torch.no_grad():
|
|
output = model(**inputs_dict)[0]
|
|
output_loaded = model_loaded(**inputs_dict)[0]
|
|
|
|
max_diff = (output - output_loaded).abs().max().item()
|
|
self.assertLessEqual(max_diff, 1e-4, "Models give different forward passes")
|
|
|
|
@unittest.skipIf(
|
|
torch_device != "cuda" or not is_xformers_available(),
|
|
reason="XFormers attention is only available with CUDA and `xformers` installed",
|
|
)
|
|
def test_xformers_enable_works(self):
|
|
init_dict, inputs_dict = self.prepare_init_args_and_inputs_for_common()
|
|
model = self.model_class(**init_dict)
|
|
|
|
model.enable_xformers_memory_efficient_attention()
|
|
|
|
assert (
|
|
model.mid_block.attentions[0].transformer_blocks[0].attn1.processor.__class__.__name__
|
|
== "XFormersAttnProcessor"
|
|
), "xformers is not enabled"
|
|
|
|
def test_gradient_checkpointing_is_applied(self):
|
|
expected_set = {
|
|
"CrossAttnUpBlockMotion",
|
|
"CrossAttnDownBlockMotion",
|
|
"UNetMidBlockCrossAttnMotion",
|
|
"UpBlockMotion",
|
|
"Transformer2DModel",
|
|
"DownBlockMotion",
|
|
}
|
|
super().test_gradient_checkpointing_is_applied(expected_set=expected_set)
|
|
|
|
def test_feed_forward_chunking(self):
|
|
init_dict, inputs_dict = self.prepare_init_args_and_inputs_for_common()
|
|
init_dict["block_out_channels"] = (32, 64)
|
|
init_dict["norm_num_groups"] = 32
|
|
|
|
model = self.model_class(**init_dict)
|
|
model.to(torch_device)
|
|
model.eval()
|
|
|
|
with torch.no_grad():
|
|
output = model(**inputs_dict)[0]
|
|
|
|
model.enable_forward_chunking()
|
|
with torch.no_grad():
|
|
output_2 = model(**inputs_dict)[0]
|
|
|
|
self.assertEqual(output.shape, output_2.shape, "Shape doesn't match")
|
|
assert np.abs(output.cpu() - output_2.cpu()).max() < 1e-2
|
|
|
|
def test_pickle(self):
|
|
# enable deterministic behavior for gradient checkpointing
|
|
init_dict, inputs_dict = self.prepare_init_args_and_inputs_for_common()
|
|
model = self.model_class(**init_dict)
|
|
model.to(torch_device)
|
|
|
|
with torch.no_grad():
|
|
sample = model(**inputs_dict).sample
|
|
|
|
sample_copy = copy.copy(sample)
|
|
|
|
assert (sample - sample_copy).abs().max() < 1e-4
|
|
|
|
def test_from_save_pretrained(self, expected_max_diff=5e-5):
|
|
init_dict, inputs_dict = self.prepare_init_args_and_inputs_for_common()
|
|
|
|
torch.manual_seed(0)
|
|
model = self.model_class(**init_dict)
|
|
model.to(torch_device)
|
|
model.eval()
|
|
|
|
with tempfile.TemporaryDirectory() as tmpdirname:
|
|
model.save_pretrained(tmpdirname, safe_serialization=False)
|
|
torch.manual_seed(0)
|
|
new_model = self.model_class.from_pretrained(tmpdirname)
|
|
new_model.to(torch_device)
|
|
|
|
with torch.no_grad():
|
|
image = model(**inputs_dict)
|
|
if isinstance(image, dict):
|
|
image = image.to_tuple()[0]
|
|
|
|
new_image = new_model(**inputs_dict)
|
|
|
|
if isinstance(new_image, dict):
|
|
new_image = new_image.to_tuple()[0]
|
|
|
|
max_diff = (image - new_image).abs().max().item()
|
|
self.assertLessEqual(max_diff, expected_max_diff, "Models give different forward passes")
|
|
|
|
def test_from_save_pretrained_variant(self, expected_max_diff=5e-5):
|
|
init_dict, inputs_dict = self.prepare_init_args_and_inputs_for_common()
|
|
|
|
torch.manual_seed(0)
|
|
model = self.model_class(**init_dict)
|
|
model.to(torch_device)
|
|
model.eval()
|
|
|
|
with tempfile.TemporaryDirectory() as tmpdirname:
|
|
model.save_pretrained(tmpdirname, variant="fp16", safe_serialization=False)
|
|
|
|
torch.manual_seed(0)
|
|
new_model = self.model_class.from_pretrained(tmpdirname, variant="fp16")
|
|
# non-variant cannot be loaded
|
|
with self.assertRaises(OSError) as error_context:
|
|
self.model_class.from_pretrained(tmpdirname)
|
|
|
|
# make sure that error message states what keys are missing
|
|
assert "Error no file named diffusion_pytorch_model.bin found in directory" in str(error_context.exception)
|
|
|
|
new_model.to(torch_device)
|
|
|
|
with torch.no_grad():
|
|
image = model(**inputs_dict)
|
|
if isinstance(image, dict):
|
|
image = image.to_tuple()[0]
|
|
|
|
new_image = new_model(**inputs_dict)
|
|
|
|
if isinstance(new_image, dict):
|
|
new_image = new_image.to_tuple()[0]
|
|
|
|
max_diff = (image - new_image).abs().max().item()
|
|
self.assertLessEqual(max_diff, expected_max_diff, "Models give different forward passes")
|
|
|
|
def test_forward_with_norm_groups(self):
|
|
init_dict, inputs_dict = self.prepare_init_args_and_inputs_for_common()
|
|
|
|
init_dict["norm_num_groups"] = 16
|
|
init_dict["block_out_channels"] = (16, 32)
|
|
|
|
model = self.model_class(**init_dict)
|
|
model.to(torch_device)
|
|
model.eval()
|
|
|
|
with torch.no_grad():
|
|
output = model(**inputs_dict)
|
|
|
|
if isinstance(output, dict):
|
|
output = output.to_tuple()[0]
|
|
|
|
self.assertIsNotNone(output)
|
|
expected_shape = inputs_dict["sample"].shape
|
|
self.assertEqual(output.shape, expected_shape, "Input and output shapes do not match")
|
|
|
|
def test_asymmetric_motion_model(self):
|
|
init_dict, inputs_dict = self.prepare_init_args_and_inputs_for_common()
|
|
|
|
init_dict["layers_per_block"] = (2, 3)
|
|
init_dict["transformer_layers_per_block"] = ((1, 2), (3, 4, 5))
|
|
init_dict["reverse_transformer_layers_per_block"] = ((7, 6, 7, 4), (4, 2, 2))
|
|
|
|
init_dict["temporal_transformer_layers_per_block"] = ((2, 5), (2, 3, 5))
|
|
init_dict["reverse_temporal_transformer_layers_per_block"] = ((5, 4, 3, 4), (3, 2, 2))
|
|
|
|
init_dict["num_attention_heads"] = (2, 4)
|
|
init_dict["motion_num_attention_heads"] = (4, 4)
|
|
init_dict["reverse_motion_num_attention_heads"] = (2, 2)
|
|
|
|
init_dict["use_motion_mid_block"] = True
|
|
init_dict["mid_block_layers"] = 2
|
|
init_dict["transformer_layers_per_mid_block"] = (1, 5)
|
|
init_dict["temporal_transformer_layers_per_mid_block"] = (2, 4)
|
|
|
|
model = self.model_class(**init_dict)
|
|
model.to(torch_device)
|
|
model.eval()
|
|
|
|
with torch.no_grad():
|
|
output = model(**inputs_dict)
|
|
|
|
if isinstance(output, dict):
|
|
output = output.to_tuple()[0]
|
|
|
|
self.assertIsNotNone(output)
|
|
expected_shape = inputs_dict["sample"].shape
|
|
self.assertEqual(output.shape, expected_shape, "Input and output shapes do not match")
|