mirror of
https://github.com/huggingface/diffusers.git
synced 2026-01-27 17:22:53 +03:00
* update
* update
* update
* update
* update
* merge main
* Revert "merge main"
This reverts commit 65efbcead5.
201 lines
7.0 KiB
Python
201 lines
7.0 KiB
Python
# coding=utf-8
|
|
# Copyright 2025 HuggingFace Inc.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
|
|
import unittest
|
|
|
|
import torch
|
|
|
|
from diffusers import SD3Transformer2DModel
|
|
from diffusers.utils.import_utils import is_xformers_available
|
|
|
|
from ...testing_utils import (
|
|
enable_full_determinism,
|
|
torch_device,
|
|
)
|
|
from ..test_modeling_common import ModelTesterMixin
|
|
|
|
|
|
enable_full_determinism()
|
|
|
|
|
|
class SD3TransformerTests(ModelTesterMixin, unittest.TestCase):
|
|
model_class = SD3Transformer2DModel
|
|
main_input_name = "hidden_states"
|
|
model_split_percents = [0.8, 0.8, 0.9]
|
|
|
|
@property
|
|
def dummy_input(self):
|
|
batch_size = 2
|
|
num_channels = 4
|
|
height = width = embedding_dim = 32
|
|
pooled_embedding_dim = embedding_dim * 2
|
|
sequence_length = 154
|
|
|
|
hidden_states = torch.randn((batch_size, num_channels, height, width)).to(torch_device)
|
|
encoder_hidden_states = torch.randn((batch_size, sequence_length, embedding_dim)).to(torch_device)
|
|
pooled_prompt_embeds = torch.randn((batch_size, pooled_embedding_dim)).to(torch_device)
|
|
timestep = torch.randint(0, 1000, size=(batch_size,)).to(torch_device)
|
|
|
|
return {
|
|
"hidden_states": hidden_states,
|
|
"encoder_hidden_states": encoder_hidden_states,
|
|
"pooled_projections": pooled_prompt_embeds,
|
|
"timestep": timestep,
|
|
}
|
|
|
|
@property
|
|
def input_shape(self):
|
|
return (4, 32, 32)
|
|
|
|
@property
|
|
def output_shape(self):
|
|
return (4, 32, 32)
|
|
|
|
def prepare_init_args_and_inputs_for_common(self):
|
|
init_dict = {
|
|
"sample_size": 32,
|
|
"patch_size": 1,
|
|
"in_channels": 4,
|
|
"num_layers": 4,
|
|
"attention_head_dim": 8,
|
|
"num_attention_heads": 4,
|
|
"caption_projection_dim": 32,
|
|
"joint_attention_dim": 32,
|
|
"pooled_projection_dim": 64,
|
|
"out_channels": 4,
|
|
"pos_embed_max_size": 96,
|
|
"dual_attention_layers": (),
|
|
"qk_norm": None,
|
|
}
|
|
inputs_dict = self.dummy_input
|
|
return init_dict, inputs_dict
|
|
|
|
@unittest.skipIf(
|
|
torch_device != "cuda" or not is_xformers_available(),
|
|
reason="XFormers attention is only available with CUDA and `xformers` installed",
|
|
)
|
|
def test_xformers_enable_works(self):
|
|
init_dict, inputs_dict = self.prepare_init_args_and_inputs_for_common()
|
|
model = self.model_class(**init_dict)
|
|
|
|
model.enable_xformers_memory_efficient_attention()
|
|
|
|
assert model.transformer_blocks[0].attn.processor.__class__.__name__ == "XFormersJointAttnProcessor", (
|
|
"xformers is not enabled"
|
|
)
|
|
|
|
@unittest.skip("SD3Transformer2DModel uses a dedicated attention processor. This test doesn't apply")
|
|
def test_set_attn_processor_for_determinism(self):
|
|
pass
|
|
|
|
def test_gradient_checkpointing_is_applied(self):
|
|
expected_set = {"SD3Transformer2DModel"}
|
|
super().test_gradient_checkpointing_is_applied(expected_set=expected_set)
|
|
|
|
|
|
class SD35TransformerTests(ModelTesterMixin, unittest.TestCase):
|
|
model_class = SD3Transformer2DModel
|
|
main_input_name = "hidden_states"
|
|
model_split_percents = [0.8, 0.8, 0.9]
|
|
|
|
@property
|
|
def dummy_input(self):
|
|
batch_size = 2
|
|
num_channels = 4
|
|
height = width = embedding_dim = 32
|
|
pooled_embedding_dim = embedding_dim * 2
|
|
sequence_length = 154
|
|
|
|
hidden_states = torch.randn((batch_size, num_channels, height, width)).to(torch_device)
|
|
encoder_hidden_states = torch.randn((batch_size, sequence_length, embedding_dim)).to(torch_device)
|
|
pooled_prompt_embeds = torch.randn((batch_size, pooled_embedding_dim)).to(torch_device)
|
|
timestep = torch.randint(0, 1000, size=(batch_size,)).to(torch_device)
|
|
|
|
return {
|
|
"hidden_states": hidden_states,
|
|
"encoder_hidden_states": encoder_hidden_states,
|
|
"pooled_projections": pooled_prompt_embeds,
|
|
"timestep": timestep,
|
|
}
|
|
|
|
@property
|
|
def input_shape(self):
|
|
return (4, 32, 32)
|
|
|
|
@property
|
|
def output_shape(self):
|
|
return (4, 32, 32)
|
|
|
|
def prepare_init_args_and_inputs_for_common(self):
|
|
init_dict = {
|
|
"sample_size": 32,
|
|
"patch_size": 1,
|
|
"in_channels": 4,
|
|
"num_layers": 4,
|
|
"attention_head_dim": 8,
|
|
"num_attention_heads": 4,
|
|
"caption_projection_dim": 32,
|
|
"joint_attention_dim": 32,
|
|
"pooled_projection_dim": 64,
|
|
"out_channels": 4,
|
|
"pos_embed_max_size": 96,
|
|
"dual_attention_layers": (0,),
|
|
"qk_norm": "rms_norm",
|
|
}
|
|
inputs_dict = self.dummy_input
|
|
return init_dict, inputs_dict
|
|
|
|
@unittest.skipIf(
|
|
torch_device != "cuda" or not is_xformers_available(),
|
|
reason="XFormers attention is only available with CUDA and `xformers` installed",
|
|
)
|
|
def test_xformers_enable_works(self):
|
|
init_dict, inputs_dict = self.prepare_init_args_and_inputs_for_common()
|
|
model = self.model_class(**init_dict)
|
|
|
|
model.enable_xformers_memory_efficient_attention()
|
|
|
|
assert model.transformer_blocks[0].attn.processor.__class__.__name__ == "XFormersJointAttnProcessor", (
|
|
"xformers is not enabled"
|
|
)
|
|
|
|
@unittest.skip("SD3Transformer2DModel uses a dedicated attention processor. This test doesn't apply")
|
|
def test_set_attn_processor_for_determinism(self):
|
|
pass
|
|
|
|
def test_gradient_checkpointing_is_applied(self):
|
|
expected_set = {"SD3Transformer2DModel"}
|
|
super().test_gradient_checkpointing_is_applied(expected_set=expected_set)
|
|
|
|
def test_skip_layers(self):
|
|
init_dict, inputs_dict = self.prepare_init_args_and_inputs_for_common()
|
|
model = self.model_class(**init_dict).to(torch_device)
|
|
|
|
# Forward pass without skipping layers
|
|
output_full = model(**inputs_dict).sample
|
|
|
|
# Forward pass with skipping layers 0 (since there's only one layer in this test setup)
|
|
inputs_dict_with_skip = inputs_dict.copy()
|
|
inputs_dict_with_skip["skip_layers"] = [0]
|
|
output_skip = model(**inputs_dict_with_skip).sample
|
|
|
|
# Check that the outputs are different
|
|
self.assertFalse(
|
|
torch.allclose(output_full, output_skip, atol=1e-5), "Outputs should differ when layers are skipped"
|
|
)
|
|
|
|
# Check that the outputs have the same shape
|
|
self.assertEqual(output_full.shape, output_skip.shape, "Outputs should have the same shape")
|