mirror of
https://github.com/huggingface/diffusers.git
synced 2026-01-27 17:22:53 +03:00
* rename photon to prx * rename photon into prx * Revert .gitignore to state before commitb7fb0fe9d6* rename photon to prx * rename photon into prx * Revert .gitignore to state before commitb7fb0fe9d6* make fix-copies
84 lines
2.5 KiB
Python
84 lines
2.5 KiB
Python
# coding=utf-8
|
|
# Copyright 2025 HuggingFace Inc.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
|
|
import unittest
|
|
|
|
import torch
|
|
|
|
from diffusers.models.transformers.transformer_prx import PRXTransformer2DModel
|
|
|
|
from ...testing_utils import enable_full_determinism, torch_device
|
|
from ..test_modeling_common import ModelTesterMixin
|
|
|
|
|
|
enable_full_determinism()
|
|
|
|
|
|
class PRXTransformerTests(ModelTesterMixin, unittest.TestCase):
|
|
model_class = PRXTransformer2DModel
|
|
main_input_name = "hidden_states"
|
|
uses_custom_attn_processor = True
|
|
|
|
@property
|
|
def dummy_input(self):
|
|
return self.prepare_dummy_input()
|
|
|
|
@property
|
|
def input_shape(self):
|
|
return (16, 16, 16)
|
|
|
|
@property
|
|
def output_shape(self):
|
|
return (16, 16, 16)
|
|
|
|
def prepare_dummy_input(self, height=16, width=16):
|
|
batch_size = 1
|
|
num_latent_channels = 16
|
|
sequence_length = 16
|
|
embedding_dim = 1792
|
|
|
|
hidden_states = torch.randn((batch_size, num_latent_channels, height, width)).to(torch_device)
|
|
encoder_hidden_states = torch.randn((batch_size, sequence_length, embedding_dim)).to(torch_device)
|
|
timestep = torch.tensor([1.0]).to(torch_device).expand(batch_size)
|
|
|
|
return {
|
|
"hidden_states": hidden_states,
|
|
"timestep": timestep,
|
|
"encoder_hidden_states": encoder_hidden_states,
|
|
}
|
|
|
|
def prepare_init_args_and_inputs_for_common(self):
|
|
init_dict = {
|
|
"in_channels": 16,
|
|
"patch_size": 2,
|
|
"context_in_dim": 1792,
|
|
"hidden_size": 1792,
|
|
"mlp_ratio": 3.5,
|
|
"num_heads": 28,
|
|
"depth": 4, # Smaller depth for testing
|
|
"axes_dim": [32, 32],
|
|
"theta": 10_000,
|
|
}
|
|
inputs_dict = self.prepare_dummy_input()
|
|
return init_dict, inputs_dict
|
|
|
|
def test_gradient_checkpointing_is_applied(self):
|
|
expected_set = {"PRXTransformer2DModel"}
|
|
super().test_gradient_checkpointing_is_applied(expected_set=expected_set)
|
|
|
|
|
|
if __name__ == "__main__":
|
|
unittest.main()
|