mirror of
https://github.com/huggingface/diffusers.git
synced 2026-01-27 17:22:53 +03:00
* update
* update
* update
* update
* update
* merge main
* Revert "merge main"
This reverts commit 65efbcead5.
97 lines
3.3 KiB
Python
97 lines
3.3 KiB
Python
# coding=utf-8
|
|
# Copyright 2025 HuggingFace Inc.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
|
|
import unittest
|
|
|
|
import torch
|
|
|
|
from diffusers import HiDreamImageTransformer2DModel
|
|
|
|
from ...testing_utils import (
|
|
enable_full_determinism,
|
|
torch_device,
|
|
)
|
|
from ..test_modeling_common import ModelTesterMixin
|
|
|
|
|
|
enable_full_determinism()
|
|
|
|
|
|
class HiDreamTransformerTests(ModelTesterMixin, unittest.TestCase):
|
|
model_class = HiDreamImageTransformer2DModel
|
|
main_input_name = "hidden_states"
|
|
model_split_percents = [0.8, 0.8, 0.9]
|
|
|
|
@property
|
|
def dummy_input(self):
|
|
batch_size = 2
|
|
num_channels = 4
|
|
height = width = 32
|
|
embedding_dim_t5, embedding_dim_llama, embedding_dim_pooled = 8, 4, 8
|
|
sequence_length = 8
|
|
|
|
hidden_states = torch.randn((batch_size, num_channels, height, width)).to(torch_device)
|
|
encoder_hidden_states_t5 = torch.randn((batch_size, sequence_length, embedding_dim_t5)).to(torch_device)
|
|
encoder_hidden_states_llama3 = torch.randn((batch_size, batch_size, sequence_length, embedding_dim_llama)).to(
|
|
torch_device
|
|
)
|
|
pooled_embeds = torch.randn((batch_size, embedding_dim_pooled)).to(torch_device)
|
|
timesteps = torch.randint(0, 1000, size=(batch_size,)).to(torch_device)
|
|
|
|
return {
|
|
"hidden_states": hidden_states,
|
|
"encoder_hidden_states_t5": encoder_hidden_states_t5,
|
|
"encoder_hidden_states_llama3": encoder_hidden_states_llama3,
|
|
"pooled_embeds": pooled_embeds,
|
|
"timesteps": timesteps,
|
|
}
|
|
|
|
@property
|
|
def input_shape(self):
|
|
return (4, 32, 32)
|
|
|
|
@property
|
|
def output_shape(self):
|
|
return (4, 32, 32)
|
|
|
|
def prepare_init_args_and_inputs_for_common(self):
|
|
init_dict = {
|
|
"patch_size": 2,
|
|
"in_channels": 4,
|
|
"out_channels": 4,
|
|
"num_layers": 1,
|
|
"num_single_layers": 1,
|
|
"attention_head_dim": 8,
|
|
"num_attention_heads": 4,
|
|
"caption_channels": [8, 4],
|
|
"text_emb_dim": 8,
|
|
"num_routed_experts": 2,
|
|
"num_activated_experts": 2,
|
|
"axes_dims_rope": (4, 2, 2),
|
|
"max_resolution": (32, 32),
|
|
"llama_layers": (0, 1),
|
|
"force_inference_output": True, # TODO: as we don't implement MoE loss in training tests.
|
|
}
|
|
inputs_dict = self.dummy_input
|
|
return init_dict, inputs_dict
|
|
|
|
@unittest.skip("HiDreamImageTransformer2DModel uses a dedicated attention processor. This test doesn't apply")
|
|
def test_set_attn_processor_for_determinism(self):
|
|
pass
|
|
|
|
def test_gradient_checkpointing_is_applied(self):
|
|
expected_set = {"HiDreamImageTransformer2DModel"}
|
|
super().test_gradient_checkpointing_is_applied(expected_set=expected_set)
|