mirror of
https://github.com/huggingface/diffusers.git
synced 2026-01-27 17:22:53 +03:00
* update
* update
* update
* update
* update
* merge main
* Revert "merge main"
This reverts commit 65efbcead5.
91 lines
2.9 KiB
Python
91 lines
2.9 KiB
Python
# coding=utf-8
|
|
# Copyright 2025 HuggingFace Inc.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
|
|
import unittest
|
|
|
|
import torch
|
|
|
|
from diffusers import CogView3PlusTransformer2DModel
|
|
|
|
from ...testing_utils import (
|
|
enable_full_determinism,
|
|
torch_device,
|
|
)
|
|
from ..test_modeling_common import ModelTesterMixin
|
|
|
|
|
|
enable_full_determinism()
|
|
|
|
|
|
class CogView3PlusTransformerTests(ModelTesterMixin, unittest.TestCase):
|
|
model_class = CogView3PlusTransformer2DModel
|
|
main_input_name = "hidden_states"
|
|
uses_custom_attn_processor = True
|
|
model_split_percents = [0.7, 0.6, 0.6]
|
|
|
|
@property
|
|
def dummy_input(self):
|
|
batch_size = 2
|
|
num_channels = 4
|
|
height = 8
|
|
width = 8
|
|
embedding_dim = 8
|
|
sequence_length = 8
|
|
|
|
hidden_states = torch.randn((batch_size, num_channels, height, width)).to(torch_device)
|
|
encoder_hidden_states = torch.randn((batch_size, sequence_length, embedding_dim)).to(torch_device)
|
|
original_size = torch.tensor([height * 8, width * 8]).unsqueeze(0).repeat(batch_size, 1).to(torch_device)
|
|
target_size = torch.tensor([height * 8, width * 8]).unsqueeze(0).repeat(batch_size, 1).to(torch_device)
|
|
crop_coords = torch.tensor([0, 0]).unsqueeze(0).repeat(batch_size, 1).to(torch_device)
|
|
timestep = torch.randint(0, 1000, size=(batch_size,)).to(torch_device)
|
|
|
|
return {
|
|
"hidden_states": hidden_states,
|
|
"encoder_hidden_states": encoder_hidden_states,
|
|
"original_size": original_size,
|
|
"target_size": target_size,
|
|
"crop_coords": crop_coords,
|
|
"timestep": timestep,
|
|
}
|
|
|
|
@property
|
|
def input_shape(self):
|
|
return (1, 4, 8, 8)
|
|
|
|
@property
|
|
def output_shape(self):
|
|
return (1, 4, 8, 8)
|
|
|
|
def prepare_init_args_and_inputs_for_common(self):
|
|
init_dict = {
|
|
"patch_size": 2,
|
|
"in_channels": 4,
|
|
"num_layers": 2,
|
|
"attention_head_dim": 4,
|
|
"num_attention_heads": 2,
|
|
"out_channels": 4,
|
|
"text_embed_dim": 8,
|
|
"time_embed_dim": 8,
|
|
"condition_dim": 2,
|
|
"pos_embed_max_size": 8,
|
|
"sample_size": 8,
|
|
}
|
|
inputs_dict = self.dummy_input
|
|
return init_dict, inputs_dict
|
|
|
|
def test_gradient_checkpointing_is_applied(self):
|
|
expected_set = {"CogView3PlusTransformer2DModel"}
|
|
super().test_gradient_checkpointing_is_applied(expected_set=expected_set)
|