mirror of
https://github.com/huggingface/diffusers.git
synced 2026-01-27 17:22:53 +03:00
* update
* update
* update
* update
* update
* merge main
* Revert "merge main"
This reverts commit 65efbcead5.
187 lines
6.1 KiB
Python
187 lines
6.1 KiB
Python
# coding=utf-8
|
|
# Copyright 2025 HuggingFace Inc.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
|
|
import gc
|
|
import inspect
|
|
import unittest
|
|
|
|
import torch
|
|
from parameterized import parameterized
|
|
|
|
from diffusers import PriorTransformer
|
|
|
|
from ...testing_utils import (
|
|
backend_empty_cache,
|
|
enable_full_determinism,
|
|
floats_tensor,
|
|
slow,
|
|
torch_all_close,
|
|
torch_device,
|
|
)
|
|
from ..test_modeling_common import ModelTesterMixin
|
|
|
|
|
|
enable_full_determinism()
|
|
|
|
|
|
class PriorTransformerTests(ModelTesterMixin, unittest.TestCase):
|
|
model_class = PriorTransformer
|
|
main_input_name = "hidden_states"
|
|
|
|
@property
|
|
def dummy_input(self):
|
|
batch_size = 4
|
|
embedding_dim = 8
|
|
num_embeddings = 7
|
|
|
|
hidden_states = floats_tensor((batch_size, embedding_dim)).to(torch_device)
|
|
|
|
proj_embedding = floats_tensor((batch_size, embedding_dim)).to(torch_device)
|
|
encoder_hidden_states = floats_tensor((batch_size, num_embeddings, embedding_dim)).to(torch_device)
|
|
|
|
return {
|
|
"hidden_states": hidden_states,
|
|
"timestep": 2,
|
|
"proj_embedding": proj_embedding,
|
|
"encoder_hidden_states": encoder_hidden_states,
|
|
}
|
|
|
|
def get_dummy_seed_input(self, seed=0):
|
|
torch.manual_seed(seed)
|
|
batch_size = 4
|
|
embedding_dim = 8
|
|
num_embeddings = 7
|
|
|
|
hidden_states = torch.randn((batch_size, embedding_dim)).to(torch_device)
|
|
|
|
proj_embedding = torch.randn((batch_size, embedding_dim)).to(torch_device)
|
|
encoder_hidden_states = torch.randn((batch_size, num_embeddings, embedding_dim)).to(torch_device)
|
|
|
|
return {
|
|
"hidden_states": hidden_states,
|
|
"timestep": 2,
|
|
"proj_embedding": proj_embedding,
|
|
"encoder_hidden_states": encoder_hidden_states,
|
|
}
|
|
|
|
@property
|
|
def input_shape(self):
|
|
return (4, 8)
|
|
|
|
@property
|
|
def output_shape(self):
|
|
return (4, 8)
|
|
|
|
def prepare_init_args_and_inputs_for_common(self):
|
|
init_dict = {
|
|
"num_attention_heads": 2,
|
|
"attention_head_dim": 4,
|
|
"num_layers": 2,
|
|
"embedding_dim": 8,
|
|
"num_embeddings": 7,
|
|
"additional_embeddings": 4,
|
|
}
|
|
inputs_dict = self.dummy_input
|
|
return init_dict, inputs_dict
|
|
|
|
def test_from_pretrained_hub(self):
|
|
model, loading_info = PriorTransformer.from_pretrained(
|
|
"hf-internal-testing/prior-dummy", output_loading_info=True
|
|
)
|
|
self.assertIsNotNone(model)
|
|
self.assertEqual(len(loading_info["missing_keys"]), 0)
|
|
|
|
model.to(torch_device)
|
|
hidden_states = model(**self.dummy_input)[0]
|
|
|
|
assert hidden_states is not None, "Make sure output is not None"
|
|
|
|
def test_forward_signature(self):
|
|
init_dict, _ = self.prepare_init_args_and_inputs_for_common()
|
|
|
|
model = self.model_class(**init_dict)
|
|
signature = inspect.signature(model.forward)
|
|
# signature.parameters is an OrderedDict => so arg_names order is deterministic
|
|
arg_names = [*signature.parameters.keys()]
|
|
|
|
expected_arg_names = ["hidden_states", "timestep"]
|
|
self.assertListEqual(arg_names[:2], expected_arg_names)
|
|
|
|
def test_output_pretrained(self):
|
|
model = PriorTransformer.from_pretrained("hf-internal-testing/prior-dummy")
|
|
model = model.to(torch_device)
|
|
|
|
if hasattr(model, "set_default_attn_processor"):
|
|
model.set_default_attn_processor()
|
|
|
|
input = self.get_dummy_seed_input()
|
|
|
|
with torch.no_grad():
|
|
output = model(**input)[0]
|
|
|
|
output_slice = output[0, :5].flatten().cpu()
|
|
|
|
# Since the VAE Gaussian prior's generator is seeded on the appropriate device,
|
|
# the expected output slices are not the same for CPU and GPU.
|
|
expected_output_slice = torch.tensor([-1.3436, -0.2870, 0.7538, 0.4368, -0.0239])
|
|
self.assertTrue(torch_all_close(output_slice, expected_output_slice, rtol=1e-2))
|
|
|
|
|
|
@slow
|
|
class PriorTransformerIntegrationTests(unittest.TestCase):
|
|
def get_dummy_seed_input(self, batch_size=1, embedding_dim=768, num_embeddings=77, seed=0):
|
|
torch.manual_seed(seed)
|
|
|
|
hidden_states = torch.randn((batch_size, embedding_dim)).to(torch_device)
|
|
|
|
proj_embedding = torch.randn((batch_size, embedding_dim)).to(torch_device)
|
|
encoder_hidden_states = torch.randn((batch_size, num_embeddings, embedding_dim)).to(torch_device)
|
|
|
|
return {
|
|
"hidden_states": hidden_states,
|
|
"timestep": 2,
|
|
"proj_embedding": proj_embedding,
|
|
"encoder_hidden_states": encoder_hidden_states,
|
|
}
|
|
|
|
def tearDown(self):
|
|
# clean up the VRAM after each test
|
|
super().tearDown()
|
|
gc.collect()
|
|
backend_empty_cache(torch_device)
|
|
|
|
@parameterized.expand(
|
|
[
|
|
# fmt: off
|
|
[13, [-0.5861, 0.1283, -0.0931, 0.0882, 0.4476, 0.1329, -0.0498, 0.0640]],
|
|
[37, [-0.4913, 0.0110, -0.0483, 0.0541, 0.4954, -0.0170, 0.0354, 0.1651]],
|
|
# fmt: on
|
|
]
|
|
)
|
|
def test_kandinsky_prior(self, seed, expected_slice):
|
|
model = PriorTransformer.from_pretrained("kandinsky-community/kandinsky-2-1-prior", subfolder="prior")
|
|
model.to(torch_device)
|
|
input = self.get_dummy_seed_input(seed=seed)
|
|
|
|
with torch.no_grad():
|
|
sample = model(**input)[0]
|
|
|
|
assert list(sample.shape) == [1, 768]
|
|
|
|
output_slice = sample[0, :8].flatten().cpu()
|
|
expected_output_slice = torch.tensor(expected_slice)
|
|
|
|
assert torch_all_close(output_slice, expected_output_slice, atol=1e-3)
|