1
0
mirror of https://github.com/huggingface/diffusers.git synced 2026-01-27 17:22:53 +03:00
Files
diffusers/tests/models/autoencoders/test_models_autoencoder_wan.py
2025-10-17 12:02:29 +05:30

93 lines
2.8 KiB
Python

# coding=utf-8
# Copyright 2025 HuggingFace Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import unittest
from diffusers import AutoencoderKLWan
from ...testing_utils import enable_full_determinism, floats_tensor, torch_device
from ..test_modeling_common import ModelTesterMixin
from .testing_utils import AutoencoderTesterMixin
enable_full_determinism()
class AutoencoderKLWanTests(ModelTesterMixin, AutoencoderTesterMixin, unittest.TestCase):
model_class = AutoencoderKLWan
main_input_name = "sample"
base_precision = 1e-2
def get_autoencoder_kl_wan_config(self):
return {
"base_dim": 3,
"z_dim": 16,
"dim_mult": [1, 1, 1, 1],
"num_res_blocks": 1,
"temperal_downsample": [False, True, True],
}
@property
def dummy_input(self):
batch_size = 2
num_frames = 9
num_channels = 3
sizes = (16, 16)
image = floats_tensor((batch_size, num_channels, num_frames) + sizes).to(torch_device)
return {"sample": image}
@property
def dummy_input_tiling(self):
batch_size = 2
num_frames = 9
num_channels = 3
sizes = (128, 128)
image = floats_tensor((batch_size, num_channels, num_frames) + sizes).to(torch_device)
return {"sample": image}
@property
def input_shape(self):
return (3, 9, 16, 16)
@property
def output_shape(self):
return (3, 9, 16, 16)
def prepare_init_args_and_inputs_for_common(self):
init_dict = self.get_autoencoder_kl_wan_config()
inputs_dict = self.dummy_input
return init_dict, inputs_dict
def prepare_init_args_and_inputs_for_tiling(self):
init_dict = self.get_autoencoder_kl_wan_config()
inputs_dict = self.dummy_input_tiling
return init_dict, inputs_dict
@unittest.skip("Gradient checkpointing has not been implemented yet")
def test_gradient_checkpointing_is_applied(self):
pass
@unittest.skip("Test not supported")
def test_forward_with_norm_groups(self):
pass
@unittest.skip("RuntimeError: fill_out not implemented for 'Float8_e4m3fn'")
def test_layerwise_casting_inference(self):
pass
@unittest.skip("RuntimeError: fill_out not implemented for 'Float8_e4m3fn'")
def test_layerwise_casting_training(self):
pass