mirror of
https://github.com/huggingface/diffusers.git
synced 2026-01-27 17:22:53 +03:00
89 lines
2.9 KiB
Python
89 lines
2.9 KiB
Python
# coding=utf-8
|
|
# Copyright 2025 HuggingFace Inc.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
|
|
import unittest
|
|
|
|
from diffusers import AutoencoderDC
|
|
|
|
from ...testing_utils import IS_GITHUB_ACTIONS, enable_full_determinism, floats_tensor, torch_device
|
|
from ..test_modeling_common import ModelTesterMixin
|
|
from .testing_utils import AutoencoderTesterMixin
|
|
|
|
|
|
enable_full_determinism()
|
|
|
|
|
|
class AutoencoderDCTests(ModelTesterMixin, AutoencoderTesterMixin, unittest.TestCase):
|
|
model_class = AutoencoderDC
|
|
main_input_name = "sample"
|
|
base_precision = 1e-2
|
|
|
|
def get_autoencoder_dc_config(self):
|
|
return {
|
|
"in_channels": 3,
|
|
"latent_channels": 4,
|
|
"attention_head_dim": 2,
|
|
"encoder_block_types": (
|
|
"ResBlock",
|
|
"EfficientViTBlock",
|
|
),
|
|
"decoder_block_types": (
|
|
"ResBlock",
|
|
"EfficientViTBlock",
|
|
),
|
|
"encoder_block_out_channels": (8, 8),
|
|
"decoder_block_out_channels": (8, 8),
|
|
"encoder_qkv_multiscales": ((), (5,)),
|
|
"decoder_qkv_multiscales": ((), (5,)),
|
|
"encoder_layers_per_block": (1, 1),
|
|
"decoder_layers_per_block": [1, 1],
|
|
"downsample_block_type": "conv",
|
|
"upsample_block_type": "interpolate",
|
|
"decoder_norm_types": "rms_norm",
|
|
"decoder_act_fns": "silu",
|
|
"scaling_factor": 0.41407,
|
|
}
|
|
|
|
@property
|
|
def dummy_input(self):
|
|
batch_size = 4
|
|
num_channels = 3
|
|
sizes = (32, 32)
|
|
|
|
image = floats_tensor((batch_size, num_channels) + sizes).to(torch_device)
|
|
|
|
return {"sample": image}
|
|
|
|
@property
|
|
def input_shape(self):
|
|
return (3, 32, 32)
|
|
|
|
@property
|
|
def output_shape(self):
|
|
return (3, 32, 32)
|
|
|
|
def prepare_init_args_and_inputs_for_common(self):
|
|
init_dict = self.get_autoencoder_dc_config()
|
|
inputs_dict = self.dummy_input
|
|
return init_dict, inputs_dict
|
|
|
|
@unittest.skipIf(IS_GITHUB_ACTIONS, reason="Skipping test inside GitHub Actions environment")
|
|
def test_layerwise_casting_inference(self):
|
|
super().test_layerwise_casting_inference()
|
|
|
|
@unittest.skipIf(IS_GITHUB_ACTIONS, reason="Skipping test inside GitHub Actions environment")
|
|
def test_layerwise_casting_memory(self):
|
|
super().test_layerwise_casting_memory()
|