mirror of
https://github.com/huggingface/diffusers.git
synced 2026-01-27 17:22:53 +03:00
* Improve incorrect LoRA format error message * Add flag in PeftLoraLoaderMixinTests to disable text encoder LoRA tests * Apply changes to LTX2LoraTests * Further improve incorrect LoRA format error msg following review --------- Co-authored-by: Sayak Paul <spsayakpaul@gmail.com>
268 lines
10 KiB
Python
268 lines
10 KiB
Python
# coding=utf-8
|
|
# Copyright 2025 HuggingFace Inc.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
import sys
|
|
import unittest
|
|
|
|
import numpy as np
|
|
import torch
|
|
from transformers import Qwen2Tokenizer, Qwen3Config, Qwen3Model
|
|
|
|
from diffusers import AutoencoderKL, FlowMatchEulerDiscreteScheduler, ZImagePipeline, ZImageTransformer2DModel
|
|
|
|
from ..testing_utils import floats_tensor, is_peft_available, require_peft_backend, skip_mps, torch_device
|
|
|
|
|
|
if is_peft_available():
|
|
from peft import LoraConfig
|
|
|
|
|
|
sys.path.append(".")
|
|
|
|
from .utils import PeftLoraLoaderMixinTests, check_if_lora_correctly_set # noqa: E402
|
|
|
|
|
|
@require_peft_backend
|
|
class ZImageLoRATests(unittest.TestCase, PeftLoraLoaderMixinTests):
|
|
pipeline_class = ZImagePipeline
|
|
scheduler_cls = FlowMatchEulerDiscreteScheduler
|
|
scheduler_kwargs = {}
|
|
|
|
transformer_kwargs = {
|
|
"all_patch_size": (2,),
|
|
"all_f_patch_size": (1,),
|
|
"in_channels": 16,
|
|
"dim": 32,
|
|
"n_layers": 2,
|
|
"n_refiner_layers": 1,
|
|
"n_heads": 2,
|
|
"n_kv_heads": 2,
|
|
"norm_eps": 1e-5,
|
|
"qk_norm": True,
|
|
"cap_feat_dim": 16,
|
|
"rope_theta": 256.0,
|
|
"t_scale": 1000.0,
|
|
"axes_dims": [8, 4, 4],
|
|
"axes_lens": [256, 32, 32],
|
|
}
|
|
transformer_cls = ZImageTransformer2DModel
|
|
vae_kwargs = {
|
|
"in_channels": 3,
|
|
"out_channels": 3,
|
|
"down_block_types": ["DownEncoderBlock2D", "DownEncoderBlock2D"],
|
|
"up_block_types": ["UpDecoderBlock2D", "UpDecoderBlock2D"],
|
|
"block_out_channels": [32, 64],
|
|
"layers_per_block": 1,
|
|
"latent_channels": 16,
|
|
"norm_num_groups": 32,
|
|
"sample_size": 32,
|
|
"scaling_factor": 0.3611,
|
|
"shift_factor": 0.1159,
|
|
}
|
|
vae_cls = AutoencoderKL
|
|
tokenizer_cls, tokenizer_id = Qwen2Tokenizer, "hf-internal-testing/tiny-random-Qwen2VLForConditionalGeneration"
|
|
text_encoder_cls, text_encoder_id = Qwen3Model, None # Will be created inline
|
|
denoiser_target_modules = ["to_q", "to_k", "to_v", "to_out.0"]
|
|
|
|
supports_text_encoder_loras = False
|
|
|
|
@property
|
|
def output_shape(self):
|
|
return (1, 32, 32, 3)
|
|
|
|
def get_dummy_inputs(self, with_generator=True):
|
|
batch_size = 1
|
|
sequence_length = 10
|
|
num_channels = 4
|
|
sizes = (32, 32)
|
|
|
|
generator = torch.manual_seed(0)
|
|
noise = floats_tensor((batch_size, num_channels) + sizes)
|
|
input_ids = torch.randint(1, sequence_length, size=(batch_size, sequence_length), generator=generator)
|
|
|
|
pipeline_inputs = {
|
|
"prompt": "A painting of a squirrel eating a burger",
|
|
"num_inference_steps": 4,
|
|
"guidance_scale": 0.0,
|
|
"height": 32,
|
|
"width": 32,
|
|
"max_sequence_length": 16,
|
|
"output_type": "np",
|
|
}
|
|
if with_generator:
|
|
pipeline_inputs.update({"generator": generator})
|
|
|
|
return noise, input_ids, pipeline_inputs
|
|
|
|
def get_dummy_components(self, scheduler_cls=None, use_dora=False, lora_alpha=None):
|
|
# Override to create Qwen3Model inline since it doesn't have a pretrained tiny model
|
|
torch.manual_seed(0)
|
|
config = Qwen3Config(
|
|
hidden_size=16,
|
|
intermediate_size=16,
|
|
num_hidden_layers=2,
|
|
num_attention_heads=2,
|
|
num_key_value_heads=2,
|
|
vocab_size=151936,
|
|
max_position_embeddings=512,
|
|
)
|
|
text_encoder = Qwen3Model(config)
|
|
tokenizer = Qwen2Tokenizer.from_pretrained(self.tokenizer_id)
|
|
|
|
transformer = self.transformer_cls(**self.transformer_kwargs)
|
|
# `x_pad_token` and `cap_pad_token` are initialized with `torch.empty`.
|
|
# This can cause NaN data values in our testing environment. Fixating them
|
|
# helps prevent that issue.
|
|
with torch.no_grad():
|
|
transformer.x_pad_token.copy_(torch.ones_like(transformer.x_pad_token.data))
|
|
transformer.cap_pad_token.copy_(torch.ones_like(transformer.cap_pad_token.data))
|
|
vae = self.vae_cls(**self.vae_kwargs)
|
|
|
|
if scheduler_cls is None:
|
|
scheduler_cls = self.scheduler_cls
|
|
scheduler = scheduler_cls(**self.scheduler_kwargs)
|
|
|
|
rank = 4
|
|
lora_alpha = rank if lora_alpha is None else lora_alpha
|
|
|
|
text_lora_config = LoraConfig(
|
|
r=rank,
|
|
lora_alpha=lora_alpha,
|
|
target_modules=["q_proj", "k_proj", "v_proj", "o_proj"],
|
|
init_lora_weights=False,
|
|
use_dora=use_dora,
|
|
)
|
|
|
|
denoiser_lora_config = LoraConfig(
|
|
r=rank,
|
|
lora_alpha=lora_alpha,
|
|
target_modules=self.denoiser_target_modules,
|
|
init_lora_weights=False,
|
|
use_dora=use_dora,
|
|
)
|
|
|
|
pipeline_components = {
|
|
"transformer": transformer,
|
|
"vae": vae,
|
|
"scheduler": scheduler,
|
|
"text_encoder": text_encoder,
|
|
"tokenizer": tokenizer,
|
|
}
|
|
|
|
return pipeline_components, text_lora_config, denoiser_lora_config
|
|
|
|
def test_correct_lora_configs_with_different_ranks(self):
|
|
components, _, denoiser_lora_config = self.get_dummy_components()
|
|
pipe = self.pipeline_class(**components)
|
|
pipe = pipe.to(torch_device)
|
|
pipe.set_progress_bar_config(disable=None)
|
|
_, _, inputs = self.get_dummy_inputs(with_generator=False)
|
|
|
|
original_output = pipe(**inputs, generator=torch.manual_seed(0))[0]
|
|
|
|
pipe.transformer.add_adapter(denoiser_lora_config, "adapter-1")
|
|
|
|
lora_output_same_rank = pipe(**inputs, generator=torch.manual_seed(0))[0]
|
|
|
|
pipe.transformer.delete_adapters("adapter-1")
|
|
|
|
denoiser = pipe.unet if self.unet_kwargs is not None else pipe.transformer
|
|
for name, _ in denoiser.named_modules():
|
|
if "to_k" in name and "attention" in name and "lora" not in name:
|
|
module_name_to_rank_update = name.replace(".base_layer.", ".")
|
|
break
|
|
|
|
# change the rank_pattern
|
|
updated_rank = denoiser_lora_config.r * 2
|
|
denoiser_lora_config.rank_pattern = {module_name_to_rank_update: updated_rank}
|
|
|
|
pipe.transformer.add_adapter(denoiser_lora_config, "adapter-1")
|
|
updated_rank_pattern = pipe.transformer.peft_config["adapter-1"].rank_pattern
|
|
|
|
self.assertTrue(updated_rank_pattern == {module_name_to_rank_update: updated_rank})
|
|
|
|
lora_output_diff_rank = pipe(**inputs, generator=torch.manual_seed(0))[0]
|
|
self.assertTrue(not np.allclose(original_output, lora_output_same_rank, atol=1e-3, rtol=1e-3))
|
|
self.assertTrue(not np.allclose(lora_output_diff_rank, lora_output_same_rank, atol=1e-3, rtol=1e-3))
|
|
|
|
pipe.transformer.delete_adapters("adapter-1")
|
|
|
|
# similarly change the alpha_pattern
|
|
updated_alpha = denoiser_lora_config.lora_alpha * 2
|
|
denoiser_lora_config.alpha_pattern = {module_name_to_rank_update: updated_alpha}
|
|
|
|
pipe.transformer.add_adapter(denoiser_lora_config, "adapter-1")
|
|
self.assertTrue(
|
|
pipe.transformer.peft_config["adapter-1"].alpha_pattern == {module_name_to_rank_update: updated_alpha}
|
|
)
|
|
|
|
lora_output_diff_alpha = pipe(**inputs, generator=torch.manual_seed(0))[0]
|
|
self.assertTrue(not np.allclose(original_output, lora_output_diff_alpha, atol=1e-3, rtol=1e-3))
|
|
self.assertTrue(not np.allclose(lora_output_diff_alpha, lora_output_same_rank, atol=1e-3, rtol=1e-3))
|
|
|
|
@skip_mps
|
|
def test_lora_fuse_nan(self):
|
|
components, _, denoiser_lora_config = self.get_dummy_components()
|
|
pipe = self.pipeline_class(**components)
|
|
pipe = pipe.to(torch_device)
|
|
pipe.set_progress_bar_config(disable=None)
|
|
_, _, inputs = self.get_dummy_inputs(with_generator=False)
|
|
|
|
denoiser = pipe.transformer if self.unet_kwargs is None else pipe.unet
|
|
denoiser.add_adapter(denoiser_lora_config, "adapter-1")
|
|
self.assertTrue(check_if_lora_correctly_set(denoiser), "Lora not correctly set in denoiser.")
|
|
|
|
# corrupt one LoRA weight with `inf` values
|
|
with torch.no_grad():
|
|
possible_tower_names = ["noise_refiner"]
|
|
filtered_tower_names = [
|
|
tower_name for tower_name in possible_tower_names if hasattr(pipe.transformer, tower_name)
|
|
]
|
|
for tower_name in filtered_tower_names:
|
|
transformer_tower = getattr(pipe.transformer, tower_name)
|
|
transformer_tower[0].attention.to_q.lora_A["adapter-1"].weight += float("inf")
|
|
|
|
# with `safe_fusing=True` we should see an Error
|
|
with self.assertRaises(ValueError):
|
|
pipe.fuse_lora(components=self.pipeline_class._lora_loadable_modules, safe_fusing=True)
|
|
|
|
# without we should not see an error, but every image will be black
|
|
pipe.fuse_lora(components=self.pipeline_class._lora_loadable_modules, safe_fusing=False)
|
|
out = pipe(**inputs)[0]
|
|
|
|
self.assertTrue(np.isnan(out).all())
|
|
|
|
def test_lora_scale_kwargs_match_fusion(self):
|
|
super().test_lora_scale_kwargs_match_fusion(5e-2, 5e-2)
|
|
|
|
@unittest.skip("Needs to be debugged.")
|
|
def test_set_adapters_match_attention_kwargs(self):
|
|
super().test_set_adapters_match_attention_kwargs()
|
|
|
|
@unittest.skip("Needs to be debugged.")
|
|
def test_simple_inference_with_text_denoiser_lora_and_scale(self):
|
|
super().test_simple_inference_with_text_denoiser_lora_and_scale()
|
|
|
|
@unittest.skip("Not supported in ZImage.")
|
|
def test_simple_inference_with_text_denoiser_block_scale(self):
|
|
pass
|
|
|
|
@unittest.skip("Not supported in ZImage.")
|
|
def test_simple_inference_with_text_denoiser_block_scale_for_all_dict_options(self):
|
|
pass
|
|
|
|
@unittest.skip("Not supported in ZImage.")
|
|
def test_modify_padding_mode(self):
|
|
pass
|