mirror of
https://github.com/huggingface/diffusers.git
synced 2026-01-27 17:22:53 +03:00
* Improve incorrect LoRA format error message * Add flag in PeftLoraLoaderMixinTests to disable text encoder LoRA tests * Apply changes to LTX2LoraTests * Further improve incorrect LoRA format error msg following review --------- Co-authored-by: Sayak Paul <spsayakpaul@gmail.com>
272 lines
9.0 KiB
Python
272 lines
9.0 KiB
Python
# Copyright 2025 HuggingFace Inc.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
|
|
import sys
|
|
import unittest
|
|
|
|
import torch
|
|
from transformers import AutoTokenizer, Gemma3ForConditionalGeneration
|
|
|
|
from diffusers import (
|
|
AutoencoderKLLTX2Audio,
|
|
AutoencoderKLLTX2Video,
|
|
FlowMatchEulerDiscreteScheduler,
|
|
LTX2Pipeline,
|
|
LTX2VideoTransformer3DModel,
|
|
)
|
|
from diffusers.pipelines.ltx2 import LTX2TextConnectors
|
|
from diffusers.pipelines.ltx2.vocoder import LTX2Vocoder
|
|
from diffusers.utils.import_utils import is_peft_available
|
|
|
|
from ..testing_utils import floats_tensor, require_peft_backend
|
|
|
|
|
|
if is_peft_available():
|
|
from peft import LoraConfig
|
|
|
|
|
|
sys.path.append(".")
|
|
|
|
from .utils import PeftLoraLoaderMixinTests # noqa: E402
|
|
|
|
|
|
@require_peft_backend
|
|
class LTX2LoRATests(unittest.TestCase, PeftLoraLoaderMixinTests):
|
|
pipeline_class = LTX2Pipeline
|
|
scheduler_cls = FlowMatchEulerDiscreteScheduler
|
|
scheduler_kwargs = {}
|
|
|
|
transformer_kwargs = {
|
|
"in_channels": 4,
|
|
"out_channels": 4,
|
|
"patch_size": 1,
|
|
"patch_size_t": 1,
|
|
"num_attention_heads": 2,
|
|
"attention_head_dim": 8,
|
|
"cross_attention_dim": 16,
|
|
"audio_in_channels": 4,
|
|
"audio_out_channels": 4,
|
|
"audio_num_attention_heads": 2,
|
|
"audio_attention_head_dim": 4,
|
|
"audio_cross_attention_dim": 8,
|
|
"num_layers": 1,
|
|
"qk_norm": "rms_norm_across_heads",
|
|
"caption_channels": 32,
|
|
"rope_double_precision": False,
|
|
"rope_type": "split",
|
|
}
|
|
transformer_cls = LTX2VideoTransformer3DModel
|
|
|
|
vae_kwargs = {
|
|
"in_channels": 3,
|
|
"out_channels": 3,
|
|
"latent_channels": 4,
|
|
"block_out_channels": (8,),
|
|
"decoder_block_out_channels": (8,),
|
|
"layers_per_block": (1,),
|
|
"decoder_layers_per_block": (1, 1),
|
|
"spatio_temporal_scaling": (True,),
|
|
"decoder_spatio_temporal_scaling": (True,),
|
|
"decoder_inject_noise": (False, False),
|
|
"downsample_type": ("spatial",),
|
|
"upsample_residual": (False,),
|
|
"upsample_factor": (1,),
|
|
"timestep_conditioning": False,
|
|
"patch_size": 1,
|
|
"patch_size_t": 1,
|
|
"encoder_causal": True,
|
|
"decoder_causal": False,
|
|
}
|
|
vae_cls = AutoencoderKLLTX2Video
|
|
|
|
audio_vae_kwargs = {
|
|
"base_channels": 4,
|
|
"output_channels": 2,
|
|
"ch_mult": (1,),
|
|
"num_res_blocks": 1,
|
|
"attn_resolutions": None,
|
|
"in_channels": 2,
|
|
"resolution": 32,
|
|
"latent_channels": 2,
|
|
"norm_type": "pixel",
|
|
"causality_axis": "height",
|
|
"dropout": 0.0,
|
|
"mid_block_add_attention": False,
|
|
"sample_rate": 16000,
|
|
"mel_hop_length": 160,
|
|
"is_causal": True,
|
|
"mel_bins": 8,
|
|
}
|
|
audio_vae_cls = AutoencoderKLLTX2Audio
|
|
|
|
vocoder_kwargs = {
|
|
"in_channels": 16, # output_channels * mel_bins = 2 * 8
|
|
"hidden_channels": 32,
|
|
"out_channels": 2,
|
|
"upsample_kernel_sizes": [4, 4],
|
|
"upsample_factors": [2, 2],
|
|
"resnet_kernel_sizes": [3],
|
|
"resnet_dilations": [[1, 3, 5]],
|
|
"leaky_relu_negative_slope": 0.1,
|
|
"output_sampling_rate": 16000,
|
|
}
|
|
vocoder_cls = LTX2Vocoder
|
|
|
|
connectors_kwargs = {
|
|
"caption_channels": 32, # Will be set dynamically from text_encoder
|
|
"text_proj_in_factor": 2, # Will be set dynamically from text_encoder
|
|
"video_connector_num_attention_heads": 4,
|
|
"video_connector_attention_head_dim": 8,
|
|
"video_connector_num_layers": 1,
|
|
"video_connector_num_learnable_registers": None,
|
|
"audio_connector_num_attention_heads": 4,
|
|
"audio_connector_attention_head_dim": 8,
|
|
"audio_connector_num_layers": 1,
|
|
"audio_connector_num_learnable_registers": None,
|
|
"connector_rope_base_seq_len": 32,
|
|
"rope_theta": 10000.0,
|
|
"rope_double_precision": False,
|
|
"causal_temporal_positioning": False,
|
|
"rope_type": "split",
|
|
}
|
|
connectors_cls = LTX2TextConnectors
|
|
|
|
tokenizer_cls, tokenizer_id = AutoTokenizer, "hf-internal-testing/tiny-gemma3"
|
|
text_encoder_cls, text_encoder_id = (
|
|
Gemma3ForConditionalGeneration,
|
|
"hf-internal-testing/tiny-gemma3",
|
|
)
|
|
|
|
denoiser_target_modules = ["to_q", "to_k", "to_out.0"]
|
|
|
|
supports_text_encoder_loras = False
|
|
|
|
@property
|
|
def output_shape(self):
|
|
return (1, 5, 32, 32, 3)
|
|
|
|
def get_dummy_inputs(self, with_generator=True):
|
|
batch_size = 1
|
|
sequence_length = 16
|
|
num_channels = 4
|
|
num_frames = 5
|
|
num_latent_frames = 2
|
|
latent_height = 8
|
|
latent_width = 8
|
|
|
|
generator = torch.manual_seed(0)
|
|
noise = floats_tensor((batch_size, num_latent_frames, num_channels, latent_height, latent_width))
|
|
input_ids = torch.randint(1, sequence_length, size=(batch_size, sequence_length), generator=generator)
|
|
|
|
pipeline_inputs = {
|
|
"prompt": "a robot dancing",
|
|
"num_frames": num_frames,
|
|
"num_inference_steps": 2,
|
|
"guidance_scale": 1.0,
|
|
"height": 32,
|
|
"width": 32,
|
|
"frame_rate": 25.0,
|
|
"max_sequence_length": sequence_length,
|
|
"output_type": "np",
|
|
}
|
|
if with_generator:
|
|
pipeline_inputs.update({"generator": generator})
|
|
|
|
return noise, input_ids, pipeline_inputs
|
|
|
|
def get_dummy_components(self, scheduler_cls=None, use_dora=False, lora_alpha=None):
|
|
# Override to instantiate LTX2-specific components (connectors, audio_vae, vocoder)
|
|
torch.manual_seed(0)
|
|
text_encoder = self.text_encoder_cls.from_pretrained(self.text_encoder_id)
|
|
tokenizer = self.tokenizer_cls.from_pretrained(self.tokenizer_id)
|
|
|
|
# Update caption_channels and text_proj_in_factor based on text_encoder config
|
|
transformer_kwargs = self.transformer_kwargs.copy()
|
|
transformer_kwargs["caption_channels"] = text_encoder.config.text_config.hidden_size
|
|
|
|
connectors_kwargs = self.connectors_kwargs.copy()
|
|
connectors_kwargs["caption_channels"] = text_encoder.config.text_config.hidden_size
|
|
connectors_kwargs["text_proj_in_factor"] = text_encoder.config.text_config.num_hidden_layers + 1
|
|
|
|
torch.manual_seed(0)
|
|
transformer = self.transformer_cls(**transformer_kwargs)
|
|
|
|
torch.manual_seed(0)
|
|
vae = self.vae_cls(**self.vae_kwargs)
|
|
vae.use_framewise_encoding = False
|
|
vae.use_framewise_decoding = False
|
|
|
|
torch.manual_seed(0)
|
|
audio_vae = self.audio_vae_cls(**self.audio_vae_kwargs)
|
|
|
|
torch.manual_seed(0)
|
|
vocoder = self.vocoder_cls(**self.vocoder_kwargs)
|
|
|
|
torch.manual_seed(0)
|
|
connectors = self.connectors_cls(**connectors_kwargs)
|
|
|
|
if scheduler_cls is None:
|
|
scheduler_cls = self.scheduler_cls
|
|
scheduler = scheduler_cls(**self.scheduler_kwargs)
|
|
|
|
rank = 4
|
|
lora_alpha = rank if lora_alpha is None else lora_alpha
|
|
|
|
text_lora_config = LoraConfig(
|
|
r=rank,
|
|
lora_alpha=lora_alpha,
|
|
target_modules=self.text_encoder_target_modules,
|
|
init_lora_weights=False,
|
|
use_dora=use_dora,
|
|
)
|
|
|
|
denoiser_lora_config = LoraConfig(
|
|
r=rank,
|
|
lora_alpha=lora_alpha,
|
|
target_modules=["to_q", "to_k", "to_v", "to_out.0"],
|
|
init_lora_weights=False,
|
|
use_dora=use_dora,
|
|
)
|
|
|
|
pipeline_components = {
|
|
"transformer": transformer,
|
|
"vae": vae,
|
|
"audio_vae": audio_vae,
|
|
"scheduler": scheduler,
|
|
"text_encoder": text_encoder,
|
|
"tokenizer": tokenizer,
|
|
"connectors": connectors,
|
|
"vocoder": vocoder,
|
|
}
|
|
|
|
return pipeline_components, text_lora_config, denoiser_lora_config
|
|
|
|
def test_simple_inference_with_text_lora_denoiser_fused_multi(self):
|
|
super().test_simple_inference_with_text_lora_denoiser_fused_multi(expected_atol=9e-3)
|
|
|
|
def test_simple_inference_with_text_denoiser_lora_unfused(self):
|
|
super().test_simple_inference_with_text_denoiser_lora_unfused(expected_atol=9e-3)
|
|
|
|
@unittest.skip("Not supported in LTX2.")
|
|
def test_simple_inference_with_text_denoiser_block_scale(self):
|
|
pass
|
|
|
|
@unittest.skip("Not supported in LTX2.")
|
|
def test_simple_inference_with_text_denoiser_block_scale_for_all_dict_options(self):
|
|
pass
|
|
|
|
@unittest.skip("Not supported in LTX2.")
|
|
def test_modify_padding_mode(self):
|
|
pass
|