mirror of
https://github.com/huggingface/diffusers.git
synced 2026-01-27 17:22:53 +03:00
* Improve incorrect LoRA format error message * Add flag in PeftLoraLoaderMixinTests to disable text encoder LoRA tests * Apply changes to LTX2LoraTests * Further improve incorrect LoRA format error msg following review --------- Co-authored-by: Sayak Paul <spsayakpaul@gmail.com>
151 lines
5.7 KiB
Python
151 lines
5.7 KiB
Python
# coding=utf-8
|
|
# Copyright 2025 HuggingFace Inc.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
import sys
|
|
import unittest
|
|
|
|
import numpy as np
|
|
import torch
|
|
from transformers import AutoProcessor, Mistral3ForConditionalGeneration
|
|
|
|
from diffusers import AutoencoderKLFlux2, FlowMatchEulerDiscreteScheduler, Flux2Pipeline, Flux2Transformer2DModel
|
|
|
|
from ..testing_utils import floats_tensor, require_peft_backend, torch_device
|
|
|
|
|
|
sys.path.append(".")
|
|
|
|
from .utils import PeftLoraLoaderMixinTests, check_if_lora_correctly_set # noqa: E402
|
|
|
|
|
|
@require_peft_backend
|
|
class Flux2LoRATests(unittest.TestCase, PeftLoraLoaderMixinTests):
|
|
pipeline_class = Flux2Pipeline
|
|
scheduler_cls = FlowMatchEulerDiscreteScheduler
|
|
scheduler_kwargs = {}
|
|
|
|
transformer_kwargs = {
|
|
"patch_size": 1,
|
|
"in_channels": 4,
|
|
"num_layers": 1,
|
|
"num_single_layers": 1,
|
|
"attention_head_dim": 16,
|
|
"num_attention_heads": 2,
|
|
"joint_attention_dim": 16,
|
|
"timestep_guidance_channels": 256,
|
|
"axes_dims_rope": [4, 4, 4, 4],
|
|
}
|
|
transformer_cls = Flux2Transformer2DModel
|
|
vae_kwargs = {
|
|
"sample_size": 32,
|
|
"in_channels": 3,
|
|
"out_channels": 3,
|
|
"down_block_types": ("DownEncoderBlock2D",),
|
|
"up_block_types": ("UpDecoderBlock2D",),
|
|
"block_out_channels": (4,),
|
|
"layers_per_block": 1,
|
|
"latent_channels": 1,
|
|
"norm_num_groups": 1,
|
|
"use_quant_conv": False,
|
|
"use_post_quant_conv": False,
|
|
}
|
|
vae_cls = AutoencoderKLFlux2
|
|
|
|
tokenizer_cls, tokenizer_id = AutoProcessor, "hf-internal-testing/tiny-mistral3-diffusers"
|
|
text_encoder_cls, text_encoder_id = Mistral3ForConditionalGeneration, "hf-internal-testing/tiny-mistral3-diffusers"
|
|
denoiser_target_modules = ["to_qkv_mlp_proj", "to_k"]
|
|
|
|
supports_text_encoder_loras = False
|
|
|
|
@property
|
|
def output_shape(self):
|
|
return (1, 8, 8, 3)
|
|
|
|
def get_dummy_inputs(self, with_generator=True):
|
|
batch_size = 1
|
|
sequence_length = 10
|
|
num_channels = 4
|
|
sizes = (32, 32)
|
|
|
|
generator = torch.manual_seed(0)
|
|
noise = floats_tensor((batch_size, num_channels) + sizes)
|
|
input_ids = torch.randint(1, sequence_length, size=(batch_size, sequence_length), generator=generator)
|
|
|
|
pipeline_inputs = {
|
|
"prompt": "a dog is dancing",
|
|
"num_inference_steps": 2,
|
|
"guidance_scale": 5.0,
|
|
"height": 8,
|
|
"width": 8,
|
|
"max_sequence_length": 8,
|
|
"output_type": "np",
|
|
"text_encoder_out_layers": (1,),
|
|
}
|
|
if with_generator:
|
|
pipeline_inputs.update({"generator": generator})
|
|
|
|
return noise, input_ids, pipeline_inputs
|
|
|
|
# Overriding because (1) text encoder LoRAs are not supported in Flux 2 and (2) because the Flux 2 single block
|
|
# QKV projections are always fused, it has no `to_q` param as expected by the original test.
|
|
def test_lora_fuse_nan(self):
|
|
components, _, denoiser_lora_config = self.get_dummy_components()
|
|
pipe = self.pipeline_class(**components)
|
|
pipe = pipe.to(torch_device)
|
|
pipe.set_progress_bar_config(disable=None)
|
|
_, _, inputs = self.get_dummy_inputs(with_generator=False)
|
|
|
|
denoiser = pipe.transformer if self.unet_kwargs is None else pipe.unet
|
|
denoiser.add_adapter(denoiser_lora_config, "adapter-1")
|
|
self.assertTrue(check_if_lora_correctly_set(denoiser), "Lora not correctly set in denoiser.")
|
|
|
|
# corrupt one LoRA weight with `inf` values
|
|
with torch.no_grad():
|
|
possible_tower_names = ["transformer_blocks", "single_transformer_blocks"]
|
|
filtered_tower_names = [
|
|
tower_name for tower_name in possible_tower_names if hasattr(pipe.transformer, tower_name)
|
|
]
|
|
if len(filtered_tower_names) == 0:
|
|
reason = f"`pipe.transformer` didn't have any of the following attributes: {possible_tower_names}."
|
|
raise ValueError(reason)
|
|
for tower_name in filtered_tower_names:
|
|
transformer_tower = getattr(pipe.transformer, tower_name)
|
|
is_single = "single" in tower_name
|
|
if is_single:
|
|
transformer_tower[0].attn.to_qkv_mlp_proj.lora_A["adapter-1"].weight += float("inf")
|
|
else:
|
|
transformer_tower[0].attn.to_k.lora_A["adapter-1"].weight += float("inf")
|
|
|
|
# with `safe_fusing=True` we should see an Error
|
|
with self.assertRaises(ValueError):
|
|
pipe.fuse_lora(components=self.pipeline_class._lora_loadable_modules, safe_fusing=True)
|
|
|
|
# without we should not see an error, but every image will be black
|
|
pipe.fuse_lora(components=self.pipeline_class._lora_loadable_modules, safe_fusing=False)
|
|
out = pipe(**inputs)[0]
|
|
|
|
self.assertTrue(np.isnan(out).all())
|
|
|
|
@unittest.skip("Not supported in Flux2.")
|
|
def test_simple_inference_with_text_denoiser_block_scale(self):
|
|
pass
|
|
|
|
@unittest.skip("Not supported in Flux2.")
|
|
def test_simple_inference_with_text_denoiser_block_scale_for_all_dict_options(self):
|
|
pass
|
|
|
|
@unittest.skip("Not supported in Flux2.")
|
|
def test_modify_padding_mode(self):
|
|
pass
|