1
0
mirror of https://github.com/huggingface/diffusers.git synced 2026-01-27 17:22:53 +03:00
Files
diffusers/tests/lora/test_lora_layers_flux2.py
dg845 f1a93c765f Add Flag to PeftLoraLoaderMixinTests to Enable/Disable Text Encoder LoRA Tests (#12962)
* Improve incorrect LoRA format error message

* Add flag in PeftLoraLoaderMixinTests to disable text encoder LoRA tests

* Apply changes to LTX2LoraTests

* Further improve incorrect LoRA format error msg following review

---------

Co-authored-by: Sayak Paul <spsayakpaul@gmail.com>
2026-01-12 16:01:58 -08:00

151 lines
5.7 KiB
Python

# coding=utf-8
# Copyright 2025 HuggingFace Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import sys
import unittest
import numpy as np
import torch
from transformers import AutoProcessor, Mistral3ForConditionalGeneration
from diffusers import AutoencoderKLFlux2, FlowMatchEulerDiscreteScheduler, Flux2Pipeline, Flux2Transformer2DModel
from ..testing_utils import floats_tensor, require_peft_backend, torch_device
sys.path.append(".")
from .utils import PeftLoraLoaderMixinTests, check_if_lora_correctly_set # noqa: E402
@require_peft_backend
class Flux2LoRATests(unittest.TestCase, PeftLoraLoaderMixinTests):
pipeline_class = Flux2Pipeline
scheduler_cls = FlowMatchEulerDiscreteScheduler
scheduler_kwargs = {}
transformer_kwargs = {
"patch_size": 1,
"in_channels": 4,
"num_layers": 1,
"num_single_layers": 1,
"attention_head_dim": 16,
"num_attention_heads": 2,
"joint_attention_dim": 16,
"timestep_guidance_channels": 256,
"axes_dims_rope": [4, 4, 4, 4],
}
transformer_cls = Flux2Transformer2DModel
vae_kwargs = {
"sample_size": 32,
"in_channels": 3,
"out_channels": 3,
"down_block_types": ("DownEncoderBlock2D",),
"up_block_types": ("UpDecoderBlock2D",),
"block_out_channels": (4,),
"layers_per_block": 1,
"latent_channels": 1,
"norm_num_groups": 1,
"use_quant_conv": False,
"use_post_quant_conv": False,
}
vae_cls = AutoencoderKLFlux2
tokenizer_cls, tokenizer_id = AutoProcessor, "hf-internal-testing/tiny-mistral3-diffusers"
text_encoder_cls, text_encoder_id = Mistral3ForConditionalGeneration, "hf-internal-testing/tiny-mistral3-diffusers"
denoiser_target_modules = ["to_qkv_mlp_proj", "to_k"]
supports_text_encoder_loras = False
@property
def output_shape(self):
return (1, 8, 8, 3)
def get_dummy_inputs(self, with_generator=True):
batch_size = 1
sequence_length = 10
num_channels = 4
sizes = (32, 32)
generator = torch.manual_seed(0)
noise = floats_tensor((batch_size, num_channels) + sizes)
input_ids = torch.randint(1, sequence_length, size=(batch_size, sequence_length), generator=generator)
pipeline_inputs = {
"prompt": "a dog is dancing",
"num_inference_steps": 2,
"guidance_scale": 5.0,
"height": 8,
"width": 8,
"max_sequence_length": 8,
"output_type": "np",
"text_encoder_out_layers": (1,),
}
if with_generator:
pipeline_inputs.update({"generator": generator})
return noise, input_ids, pipeline_inputs
# Overriding because (1) text encoder LoRAs are not supported in Flux 2 and (2) because the Flux 2 single block
# QKV projections are always fused, it has no `to_q` param as expected by the original test.
def test_lora_fuse_nan(self):
components, _, denoiser_lora_config = self.get_dummy_components()
pipe = self.pipeline_class(**components)
pipe = pipe.to(torch_device)
pipe.set_progress_bar_config(disable=None)
_, _, inputs = self.get_dummy_inputs(with_generator=False)
denoiser = pipe.transformer if self.unet_kwargs is None else pipe.unet
denoiser.add_adapter(denoiser_lora_config, "adapter-1")
self.assertTrue(check_if_lora_correctly_set(denoiser), "Lora not correctly set in denoiser.")
# corrupt one LoRA weight with `inf` values
with torch.no_grad():
possible_tower_names = ["transformer_blocks", "single_transformer_blocks"]
filtered_tower_names = [
tower_name for tower_name in possible_tower_names if hasattr(pipe.transformer, tower_name)
]
if len(filtered_tower_names) == 0:
reason = f"`pipe.transformer` didn't have any of the following attributes: {possible_tower_names}."
raise ValueError(reason)
for tower_name in filtered_tower_names:
transformer_tower = getattr(pipe.transformer, tower_name)
is_single = "single" in tower_name
if is_single:
transformer_tower[0].attn.to_qkv_mlp_proj.lora_A["adapter-1"].weight += float("inf")
else:
transformer_tower[0].attn.to_k.lora_A["adapter-1"].weight += float("inf")
# with `safe_fusing=True` we should see an Error
with self.assertRaises(ValueError):
pipe.fuse_lora(components=self.pipeline_class._lora_loadable_modules, safe_fusing=True)
# without we should not see an error, but every image will be black
pipe.fuse_lora(components=self.pipeline_class._lora_loadable_modules, safe_fusing=False)
out = pipe(**inputs)[0]
self.assertTrue(np.isnan(out).all())
@unittest.skip("Not supported in Flux2.")
def test_simple_inference_with_text_denoiser_block_scale(self):
pass
@unittest.skip("Not supported in Flux2.")
def test_simple_inference_with_text_denoiser_block_scale_for_all_dict_options(self):
pass
@unittest.skip("Not supported in Flux2.")
def test_modify_padding_mode(self):
pass