mirror of
https://github.com/huggingface/diffusers.git
synced 2026-01-27 17:22:53 +03:00
* Improve incorrect LoRA format error message * Add flag in PeftLoraLoaderMixinTests to disable text encoder LoRA tests * Apply changes to LTX2LoraTests * Further improve incorrect LoRA format error msg following review --------- Co-authored-by: Sayak Paul <spsayakpaul@gmail.com>
167 lines
5.6 KiB
Python
167 lines
5.6 KiB
Python
# Copyright 2025 HuggingFace Inc.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
|
|
import sys
|
|
import tempfile
|
|
import unittest
|
|
|
|
import numpy as np
|
|
import torch
|
|
from parameterized import parameterized
|
|
from transformers import AutoTokenizer, GlmModel
|
|
|
|
from diffusers import AutoencoderKL, CogView4Pipeline, CogView4Transformer2DModel, FlowMatchEulerDiscreteScheduler
|
|
|
|
from ..testing_utils import (
|
|
floats_tensor,
|
|
require_peft_backend,
|
|
require_torch_accelerator,
|
|
skip_mps,
|
|
torch_device,
|
|
)
|
|
|
|
|
|
sys.path.append(".")
|
|
|
|
from .utils import PeftLoraLoaderMixinTests # noqa: E402
|
|
|
|
|
|
class TokenizerWrapper:
|
|
@staticmethod
|
|
def from_pretrained(*args, **kwargs):
|
|
return AutoTokenizer.from_pretrained(
|
|
"hf-internal-testing/tiny-random-cogview4", subfolder="tokenizer", trust_remote_code=True
|
|
)
|
|
|
|
|
|
@require_peft_backend
|
|
@skip_mps
|
|
class CogView4LoRATests(unittest.TestCase, PeftLoraLoaderMixinTests):
|
|
pipeline_class = CogView4Pipeline
|
|
scheduler_cls = FlowMatchEulerDiscreteScheduler
|
|
scheduler_kwargs = {}
|
|
|
|
transformer_kwargs = {
|
|
"patch_size": 2,
|
|
"in_channels": 4,
|
|
"num_layers": 2,
|
|
"attention_head_dim": 4,
|
|
"num_attention_heads": 4,
|
|
"out_channels": 4,
|
|
"text_embed_dim": 32,
|
|
"time_embed_dim": 8,
|
|
"condition_dim": 4,
|
|
}
|
|
transformer_cls = CogView4Transformer2DModel
|
|
vae_kwargs = {
|
|
"block_out_channels": [32, 64],
|
|
"in_channels": 3,
|
|
"out_channels": 3,
|
|
"down_block_types": ["DownEncoderBlock2D", "DownEncoderBlock2D"],
|
|
"up_block_types": ["UpDecoderBlock2D", "UpDecoderBlock2D"],
|
|
"latent_channels": 4,
|
|
"sample_size": 128,
|
|
}
|
|
vae_cls = AutoencoderKL
|
|
tokenizer_cls, tokenizer_id, tokenizer_subfolder = (
|
|
TokenizerWrapper,
|
|
"hf-internal-testing/tiny-random-cogview4",
|
|
"tokenizer",
|
|
)
|
|
text_encoder_cls, text_encoder_id, text_encoder_subfolder = (
|
|
GlmModel,
|
|
"hf-internal-testing/tiny-random-cogview4",
|
|
"text_encoder",
|
|
)
|
|
|
|
supports_text_encoder_loras = False
|
|
|
|
@property
|
|
def output_shape(self):
|
|
return (1, 32, 32, 3)
|
|
|
|
def get_dummy_inputs(self, with_generator=True):
|
|
batch_size = 1
|
|
sequence_length = 16
|
|
num_channels = 4
|
|
sizes = (4, 4)
|
|
|
|
generator = torch.manual_seed(0)
|
|
noise = floats_tensor((batch_size, num_channels) + sizes)
|
|
input_ids = torch.randint(1, sequence_length, size=(batch_size, sequence_length), generator=generator)
|
|
|
|
pipeline_inputs = {
|
|
"prompt": "",
|
|
"num_inference_steps": 1,
|
|
"guidance_scale": 6.0,
|
|
"height": 32,
|
|
"width": 32,
|
|
"max_sequence_length": sequence_length,
|
|
"output_type": "np",
|
|
}
|
|
if with_generator:
|
|
pipeline_inputs.update({"generator": generator})
|
|
|
|
return noise, input_ids, pipeline_inputs
|
|
|
|
def test_simple_inference_with_text_lora_denoiser_fused_multi(self):
|
|
super().test_simple_inference_with_text_lora_denoiser_fused_multi(expected_atol=9e-3)
|
|
|
|
def test_simple_inference_with_text_denoiser_lora_unfused(self):
|
|
super().test_simple_inference_with_text_denoiser_lora_unfused(expected_atol=9e-3)
|
|
|
|
def test_simple_inference_save_pretrained(self):
|
|
"""
|
|
Tests a simple usecase where users could use saving utilities for LoRA through save_pretrained
|
|
"""
|
|
components, _, _ = self.get_dummy_components()
|
|
pipe = self.pipeline_class(**components)
|
|
pipe = pipe.to(torch_device)
|
|
pipe.set_progress_bar_config(disable=None)
|
|
_, _, inputs = self.get_dummy_inputs(with_generator=False)
|
|
|
|
images_lora = pipe(**inputs, generator=torch.manual_seed(0))[0]
|
|
|
|
with tempfile.TemporaryDirectory() as tmpdirname:
|
|
pipe.save_pretrained(tmpdirname)
|
|
|
|
pipe_from_pretrained = self.pipeline_class.from_pretrained(tmpdirname)
|
|
pipe_from_pretrained.to(torch_device)
|
|
|
|
images_lora_save_pretrained = pipe_from_pretrained(**inputs, generator=torch.manual_seed(0))[0]
|
|
|
|
self.assertTrue(
|
|
np.allclose(images_lora, images_lora_save_pretrained, atol=1e-3, rtol=1e-3),
|
|
"Loading from saved checkpoints should give same results.",
|
|
)
|
|
|
|
@parameterized.expand([("block_level", True), ("leaf_level", False)])
|
|
@require_torch_accelerator
|
|
def test_group_offloading_inference_denoiser(self, offload_type, use_stream):
|
|
# TODO: We don't run the (leaf_level, True) test here that is enabled for other models.
|
|
# The reason for this can be found here: https://github.com/huggingface/diffusers/pull/11804#issuecomment-3013325338
|
|
super()._test_group_offloading_inference_denoiser(offload_type, use_stream)
|
|
|
|
@unittest.skip("Not supported in CogView4.")
|
|
def test_simple_inference_with_text_denoiser_block_scale(self):
|
|
pass
|
|
|
|
@unittest.skip("Not supported in CogView4.")
|
|
def test_simple_inference_with_text_denoiser_block_scale_for_all_dict_options(self):
|
|
pass
|
|
|
|
@unittest.skip("Not supported in CogView4.")
|
|
def test_modify_padding_mode(self):
|
|
pass
|