mirror of
https://github.com/huggingface/diffusers.git
synced 2026-01-27 17:22:53 +03:00
* Add initial template * Second template * feat: Add TextEmbeddingModule to AnyTextPipeline * feat: Add AuxiliaryLatentModule template to AnyTextPipeline * Add bert tokenizer from the anytext repo for now * feat: Update AnyTextPipeline's modify_prompt method This commit adds improvements to the modify_prompt method in the AnyTextPipeline class. The method now handles special characters and replaces selected string prompts with a placeholder. Additionally, it includes a check for Chinese text and translation using the trans_pipe. * Fill in the `forward` pass of `AuxiliaryLatentModule` * `make style && make quality` * `chore: Update bert_tokenizer.py with a TODO comment suggesting the use of the transformers library` * Update error handling to raise and logging * Add `create_glyph_lines` function into `TextEmbeddingModule` * make style * Up * Up * Up * Up * Remove several comments * refactor: Remove ControlNetConditioningEmbedding and update code accordingly * Up * Up * up * refactor: Update AnyTextPipeline to include new optional parameters * up * feat: Add OCR model and its components * chore: Update `TextEmbeddingModule` to include OCR model components and dependencies * chore: Update `AuxiliaryLatentModule` to include VAE model and its dependencies for masked image in the editing task * `make style` * refactor: Update `AnyTextPipeline`'s docstring * Update `AuxiliaryLatentModule` to include info dictionary so that text processing is done once * simplify * `make style` * Converting `TextEmbeddingModule` to ordinary `encode_prompt()` function * Simplify for now * `make style` * Up * feat: Add scripts to convert AnyText controlnet to diffusers * `make style` * Fix: Move glyph rendering to `TextEmbeddingModule` from `AuxiliaryLatentModule` * make style * Up * Simplify * Up * feat: Add safetensors module for loading model file * Fix device issues * Up * Up * refactor: Simplify * refactor: Simplify code for loading models and handling data types * `make style` * refactor: Update to() method in FrozenCLIPEmbedderT3 and TextEmbeddingModule * refactor: Update dtype in embedding_manager.py to match proj.weight * Up * Add attribution and adaptation information to pipeline_anytext.py * Update usage example * Will refactor `controlnet_cond_embedding` initialization * Add `AnyTextControlNetConditioningEmbedding` template * Refactor organization * style * style * Move custom blocks from `AuxiliaryLatentModule` to `AnyTextControlNetConditioningEmbedding` * Follow one-file policy * style * [Docs] Update README and pipeline_anytext.py to use AnyTextControlNetModel * [Docs] Update import statement for AnyTextControlNetModel in pipeline_anytext.py * [Fix] Update import path for ControlNetModel, ControlNetOutput in anytext_controlnet.py * Refactor AnyTextControlNet to use configurable conditioning embedding channels * Complete control net conditioning embedding in AnyTextControlNetModel * up * [FIX] Ensure embeddings use correct device in AnyTextControlNetModel * up * up * style * [UPDATE] Revise README and example code for AnyTextPipeline integration with DiffusionPipeline * [UPDATE] Update example code in anytext.py to use correct font file and improve clarity * down * [UPDATE] Refactor BasicTokenizer usage to a new Checker class for text processing * update pillow * [UPDATE] Remove commented-out code and unnecessary docstring in anytext.py and anytext_controlnet.py for improved clarity * [REMOVE] Delete frozen_clip_embedder_t3.py as it is in the anytext.py file * [UPDATE] Replace edict with dict for configuration in anytext.py and RecModel.py for consistency * 🆙 * style * [UPDATE] Revise README.md for clarity, remove unused imports in anytext.py, and add author credits in anytext_controlnet.py * style * Update examples/research_projects/anytext/README.md Co-authored-by: Aryan <contact.aryanvs@gmail.com> * Remove commented-out image preparation code in AnyTextPipeline * Remove unnecessary blank line in README.md
50 lines
1.7 KiB
Python
Executable File
50 lines
1.7 KiB
Python
Executable File
from torch import nn
|
|
|
|
from .RecCTCHead import CTCHead
|
|
from .RecMv1_enhance import MobileNetV1Enhance
|
|
from .RNN import Im2Im, Im2Seq, SequenceEncoder
|
|
|
|
|
|
backbone_dict = {"MobileNetV1Enhance": MobileNetV1Enhance}
|
|
neck_dict = {"SequenceEncoder": SequenceEncoder, "Im2Seq": Im2Seq, "None": Im2Im}
|
|
head_dict = {"CTCHead": CTCHead}
|
|
|
|
|
|
class RecModel(nn.Module):
|
|
def __init__(self, config):
|
|
super().__init__()
|
|
assert "in_channels" in config, "in_channels must in model config"
|
|
backbone_type = config["backbone"].pop("type")
|
|
assert backbone_type in backbone_dict, f"backbone.type must in {backbone_dict}"
|
|
self.backbone = backbone_dict[backbone_type](config["in_channels"], **config["backbone"])
|
|
|
|
neck_type = config["neck"].pop("type")
|
|
assert neck_type in neck_dict, f"neck.type must in {neck_dict}"
|
|
self.neck = neck_dict[neck_type](self.backbone.out_channels, **config["neck"])
|
|
|
|
head_type = config["head"].pop("type")
|
|
assert head_type in head_dict, f"head.type must in {head_dict}"
|
|
self.head = head_dict[head_type](self.neck.out_channels, **config["head"])
|
|
|
|
self.name = f"RecModel_{backbone_type}_{neck_type}_{head_type}"
|
|
|
|
def load_3rd_state_dict(self, _3rd_name, _state):
|
|
self.backbone.load_3rd_state_dict(_3rd_name, _state)
|
|
self.neck.load_3rd_state_dict(_3rd_name, _state)
|
|
self.head.load_3rd_state_dict(_3rd_name, _state)
|
|
|
|
def forward(self, x):
|
|
import torch
|
|
|
|
x = x.to(torch.float32)
|
|
x = self.backbone(x)
|
|
x = self.neck(x)
|
|
x = self.head(x)
|
|
return x
|
|
|
|
def encode(self, x):
|
|
x = self.backbone(x)
|
|
x = self.neck(x)
|
|
x = self.head.ctc_encoder(x)
|
|
return x
|