mirror of
https://github.com/huggingface/diffusers.git
synced 2026-01-27 17:22:53 +03:00
* Update EasyAnimate V5.1 * Add docs && add tests && Fix comments problems in transformer3d and vae * delete comments and remove useless import * delete process * Update EXAMPLE_DOC_STRING * rename transformer file * make fix-copies * make style * refactor pt. 1 * update toctree.yml * add model tests * Update layer_norm for norm_added_q and norm_added_k in Attention * Fix processor problem * refactor vae * Fix problem in comments * refactor tiling; remove einops dependency * fix docs path * make fix-copies * Update src/diffusers/pipelines/easyanimate/pipeline_easyanimate_control.py * update _toctree.yml * fix test * update * update * update * make fix-copies * fix tests --------- Co-authored-by: Aryan <aryan@huggingface.co> Co-authored-by: Aryan <contact.aryanvs@gmail.com> Co-authored-by: YiYi Xu <yixu310@gmail.com> Co-authored-by: Dhruv Nair <dhruv.nair@gmail.com>
1.2 KiB
1.2 KiB
AutoencoderKLMagvit
The 3D variational autoencoder (VAE) model with KL loss used in EasyAnimate was introduced by Alibaba PAI.
The model can be loaded with the following code snippet.
from diffusers import AutoencoderKLMagvit
vae = AutoencoderKLMagvit.from_pretrained("alibaba-pai/EasyAnimateV5.1-12b-zh", subfolder="vae", torch_dtype=torch.float16).to("cuda")
AutoencoderKLMagvit
autodoc AutoencoderKLMagvit - decode - encode - all
AutoencoderKLOutput
autodoc models.autoencoders.autoencoder_kl.AutoencoderKLOutput
DecoderOutput
autodoc models.autoencoders.vae.DecoderOutput