mirror of
https://github.com/huggingface/diffusers.git
synced 2026-01-27 17:22:53 +03:00
* update
* update
* update
* update
* update
* merge main
* Revert "merge main"
This reverts commit 65efbcead5.
107 lines
4.2 KiB
Python
107 lines
4.2 KiB
Python
# coding=utf-8
|
|
# Copyright 2025 The HuggingFace Team Inc.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a clone of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
import gc
|
|
import inspect
|
|
|
|
import torch
|
|
|
|
from diffusers import DiffusionPipeline
|
|
|
|
from ..testing_utils import backend_empty_cache, require_torch_accelerator, slow, torch_device
|
|
|
|
|
|
@require_torch_accelerator
|
|
@slow
|
|
class QuantCompileTests:
|
|
@property
|
|
def quantization_config(self):
|
|
raise NotImplementedError(
|
|
"This property should be implemented in the subclass to return the appropriate quantization config."
|
|
)
|
|
|
|
def setUp(self):
|
|
super().setUp()
|
|
gc.collect()
|
|
backend_empty_cache(torch_device)
|
|
torch.compiler.reset()
|
|
|
|
def tearDown(self):
|
|
super().tearDown()
|
|
gc.collect()
|
|
backend_empty_cache(torch_device)
|
|
torch.compiler.reset()
|
|
|
|
def _init_pipeline(self, quantization_config, torch_dtype):
|
|
pipe = DiffusionPipeline.from_pretrained(
|
|
"stabilityai/stable-diffusion-3-medium-diffusers",
|
|
quantization_config=quantization_config,
|
|
torch_dtype=torch_dtype,
|
|
)
|
|
return pipe
|
|
|
|
def _test_torch_compile(self, torch_dtype=torch.bfloat16):
|
|
pipe = self._init_pipeline(self.quantization_config, torch_dtype).to(torch_device)
|
|
# `fullgraph=True` ensures no graph breaks
|
|
pipe.transformer.compile(fullgraph=True)
|
|
|
|
# small resolutions to ensure speedy execution.
|
|
with torch._dynamo.config.patch(error_on_recompile=True):
|
|
pipe("a dog", num_inference_steps=2, max_sequence_length=16, height=256, width=256)
|
|
|
|
def _test_torch_compile_with_cpu_offload(self, torch_dtype=torch.bfloat16):
|
|
pipe = self._init_pipeline(self.quantization_config, torch_dtype)
|
|
pipe.enable_model_cpu_offload()
|
|
# regional compilation is better for offloading.
|
|
# see: https://pytorch.org/blog/torch-compile-and-diffusers-a-hands-on-guide-to-peak-performance/
|
|
if getattr(pipe.transformer, "_repeated_blocks"):
|
|
pipe.transformer.compile_repeated_blocks(fullgraph=True)
|
|
else:
|
|
pipe.transformer.compile()
|
|
|
|
# small resolutions to ensure speedy execution.
|
|
pipe("a dog", num_inference_steps=2, max_sequence_length=16, height=256, width=256)
|
|
|
|
def _test_torch_compile_with_group_offload_leaf(self, torch_dtype=torch.bfloat16, *, use_stream: bool = False):
|
|
torch._dynamo.config.cache_size_limit = 1000
|
|
|
|
pipe = self._init_pipeline(self.quantization_config, torch_dtype)
|
|
group_offload_kwargs = {
|
|
"onload_device": torch.device(torch_device),
|
|
"offload_device": torch.device("cpu"),
|
|
"offload_type": "leaf_level",
|
|
"use_stream": use_stream,
|
|
}
|
|
pipe.transformer.enable_group_offload(**group_offload_kwargs)
|
|
pipe.transformer.compile()
|
|
for name, component in pipe.components.items():
|
|
if name != "transformer" and isinstance(component, torch.nn.Module):
|
|
if torch.device(component.device).type == "cpu":
|
|
component.to(torch_device)
|
|
|
|
# small resolutions to ensure speedy execution.
|
|
pipe("a dog", num_inference_steps=2, max_sequence_length=16, height=256, width=256)
|
|
|
|
def test_torch_compile(self):
|
|
self._test_torch_compile()
|
|
|
|
def test_torch_compile_with_cpu_offload(self):
|
|
self._test_torch_compile_with_cpu_offload()
|
|
|
|
def test_torch_compile_with_group_offload_leaf(self, use_stream=False):
|
|
for cls in inspect.getmro(self.__class__):
|
|
if "test_torch_compile_with_group_offload_leaf" in cls.__dict__ and cls is not QuantCompileTests:
|
|
return
|
|
self._test_torch_compile_with_group_offload_leaf(use_stream=use_stream)
|