1
0
mirror of https://github.com/huggingface/diffusers.git synced 2026-01-27 17:22:53 +03:00
Files
diffusers/tests/test_models_unet_1d.py
Patrick von Platen 88fa6b7d68 [Dance Diffusion] Add dance diffusion (#803)
* start

* add more logic

* Update src/diffusers/models/unet_2d_condition_flax.py

* match weights

* up

* make model work

* making class more general, fixing missed file rename

* small fix

* make new conversion work

* up

* finalize conversion

* up

* first batch of variable renamings

* remove c and c_prev var names

* add mid and out block structure

* add pipeline

* up

* finish conversion

* finish

* upload

* more fixes

* Apply suggestions from code review

* add attr

* up

* uP

* up

* finish tests

* finish

* uP

* finish

* fix test

* up

* naming consistency in tests

* Apply suggestions from code review

Co-authored-by: Suraj Patil <surajp815@gmail.com>
Co-authored-by: Pedro Cuenca <pedro@huggingface.co>
Co-authored-by: Nathan Lambert <nathan@huggingface.co>
Co-authored-by: Anton Lozhkov <anton@huggingface.co>

* remove hardcoded 16

* Remove bogus

* fix some stuff

* finish

* improve logging

* docs

* upload

Co-authored-by: Nathan Lambert <nol@berkeley.edu>
Co-authored-by: Suraj Patil <surajp815@gmail.com>
Co-authored-by: Pedro Cuenca <pedro@huggingface.co>
Co-authored-by: Nathan Lambert <nathan@huggingface.co>
Co-authored-by: Anton Lozhkov <anton@huggingface.co>
2022-10-25 18:39:25 +02:00

46 lines
1.4 KiB
Python

# coding=utf-8
# Copyright 2022 HuggingFace Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import unittest
import torch
from diffusers import UNet1DModel
from diffusers.utils import slow, torch_device
torch.backends.cuda.matmul.allow_tf32 = False
class UnetModel1DTests(unittest.TestCase):
@slow
def test_unet_1d_maestro(self):
model_id = "harmonai/maestro-150k"
model = UNet1DModel.from_pretrained(model_id, subfolder="unet")
model.to(torch_device)
sample_size = 65536
noise = torch.sin(torch.arange(sample_size)[None, None, :].repeat(1, 2, 1)).to(torch_device)
timestep = torch.tensor([1]).to(torch_device)
with torch.no_grad():
output = model(noise, timestep).sample
output_sum = output.abs().sum()
output_max = output.abs().max()
assert (output_sum - 224.0896).abs() < 4e-2
assert (output_max - 0.0607).abs() < 4e-4