mirror of
https://github.com/huggingface/diffusers.git
synced 2026-01-29 07:22:12 +03:00
* update
* update
* update
* update
* update
* merge main
* Revert "merge main"
This reverts commit 65efbcead5.
301 lines
12 KiB
Python
301 lines
12 KiB
Python
import tempfile
|
|
from typing import Dict, List, Tuple
|
|
|
|
import torch
|
|
|
|
from diffusers import LCMScheduler
|
|
|
|
from ..testing_utils import torch_device
|
|
from .test_schedulers import SchedulerCommonTest
|
|
|
|
|
|
class LCMSchedulerTest(SchedulerCommonTest):
|
|
scheduler_classes = (LCMScheduler,)
|
|
forward_default_kwargs = (("num_inference_steps", 10),)
|
|
|
|
def get_scheduler_config(self, **kwargs):
|
|
config = {
|
|
"num_train_timesteps": 1000,
|
|
"beta_start": 0.00085,
|
|
"beta_end": 0.0120,
|
|
"beta_schedule": "scaled_linear",
|
|
"prediction_type": "epsilon",
|
|
}
|
|
|
|
config.update(**kwargs)
|
|
return config
|
|
|
|
@property
|
|
def default_valid_timestep(self):
|
|
kwargs = dict(self.forward_default_kwargs)
|
|
num_inference_steps = kwargs.pop("num_inference_steps", None)
|
|
|
|
scheduler_config = self.get_scheduler_config()
|
|
scheduler = self.scheduler_classes[0](**scheduler_config)
|
|
|
|
scheduler.set_timesteps(num_inference_steps)
|
|
timestep = scheduler.timesteps[-1]
|
|
return timestep
|
|
|
|
def test_timesteps(self):
|
|
for timesteps in [100, 500, 1000]:
|
|
# 0 is not guaranteed to be in the timestep schedule, but timesteps - 1 is
|
|
self.check_over_configs(time_step=timesteps - 1, num_train_timesteps=timesteps)
|
|
|
|
def test_betas(self):
|
|
for beta_start, beta_end in zip([0.0001, 0.001, 0.01, 0.1], [0.002, 0.02, 0.2, 2]):
|
|
self.check_over_configs(time_step=self.default_valid_timestep, beta_start=beta_start, beta_end=beta_end)
|
|
|
|
def test_schedules(self):
|
|
for schedule in ["linear", "scaled_linear", "squaredcos_cap_v2"]:
|
|
self.check_over_configs(time_step=self.default_valid_timestep, beta_schedule=schedule)
|
|
|
|
def test_prediction_type(self):
|
|
for prediction_type in ["epsilon", "v_prediction"]:
|
|
self.check_over_configs(time_step=self.default_valid_timestep, prediction_type=prediction_type)
|
|
|
|
def test_clip_sample(self):
|
|
for clip_sample in [True, False]:
|
|
self.check_over_configs(time_step=self.default_valid_timestep, clip_sample=clip_sample)
|
|
|
|
def test_thresholding(self):
|
|
self.check_over_configs(time_step=self.default_valid_timestep, thresholding=False)
|
|
for threshold in [0.5, 1.0, 2.0]:
|
|
for prediction_type in ["epsilon", "v_prediction"]:
|
|
self.check_over_configs(
|
|
time_step=self.default_valid_timestep,
|
|
thresholding=True,
|
|
prediction_type=prediction_type,
|
|
sample_max_value=threshold,
|
|
)
|
|
|
|
def test_time_indices(self):
|
|
# Get default timestep schedule.
|
|
kwargs = dict(self.forward_default_kwargs)
|
|
num_inference_steps = kwargs.pop("num_inference_steps", None)
|
|
|
|
scheduler_config = self.get_scheduler_config()
|
|
scheduler = self.scheduler_classes[0](**scheduler_config)
|
|
|
|
scheduler.set_timesteps(num_inference_steps)
|
|
timesteps = scheduler.timesteps
|
|
for t in timesteps:
|
|
self.check_over_forward(time_step=t)
|
|
|
|
def test_inference_steps(self):
|
|
# Hardcoded for now
|
|
for t, num_inference_steps in zip([99, 39, 39, 19], [10, 25, 26, 50]):
|
|
self.check_over_forward(time_step=t, num_inference_steps=num_inference_steps)
|
|
|
|
# Override test_add_noise_device because the hardcoded num_inference_steps of 100 doesn't work
|
|
# for LCMScheduler under default settings
|
|
def test_add_noise_device(self, num_inference_steps=10):
|
|
for scheduler_class in self.scheduler_classes:
|
|
scheduler_config = self.get_scheduler_config()
|
|
scheduler = scheduler_class(**scheduler_config)
|
|
scheduler.set_timesteps(num_inference_steps)
|
|
|
|
sample = self.dummy_sample.to(torch_device)
|
|
scaled_sample = scheduler.scale_model_input(sample, 0.0)
|
|
self.assertEqual(sample.shape, scaled_sample.shape)
|
|
|
|
noise = torch.randn(scaled_sample.shape).to(torch_device)
|
|
t = scheduler.timesteps[5][None]
|
|
noised = scheduler.add_noise(scaled_sample, noise, t)
|
|
self.assertEqual(noised.shape, scaled_sample.shape)
|
|
|
|
# Override test_from_save_pretrained because it hardcodes a timestep of 1
|
|
def test_from_save_pretrained(self):
|
|
kwargs = dict(self.forward_default_kwargs)
|
|
num_inference_steps = kwargs.pop("num_inference_steps", None)
|
|
|
|
for scheduler_class in self.scheduler_classes:
|
|
timestep = self.default_valid_timestep
|
|
|
|
scheduler_config = self.get_scheduler_config()
|
|
scheduler = scheduler_class(**scheduler_config)
|
|
|
|
sample = self.dummy_sample
|
|
residual = 0.1 * sample
|
|
|
|
with tempfile.TemporaryDirectory() as tmpdirname:
|
|
scheduler.save_config(tmpdirname)
|
|
new_scheduler = scheduler_class.from_pretrained(tmpdirname)
|
|
|
|
scheduler.set_timesteps(num_inference_steps)
|
|
new_scheduler.set_timesteps(num_inference_steps)
|
|
|
|
kwargs["generator"] = torch.manual_seed(0)
|
|
output = scheduler.step(residual, timestep, sample, **kwargs).prev_sample
|
|
|
|
kwargs["generator"] = torch.manual_seed(0)
|
|
new_output = new_scheduler.step(residual, timestep, sample, **kwargs).prev_sample
|
|
|
|
assert torch.sum(torch.abs(output - new_output)) < 1e-5, "Scheduler outputs are not identical"
|
|
|
|
# Override test_step_shape because uses 0 and 1 as hardcoded timesteps
|
|
def test_step_shape(self):
|
|
kwargs = dict(self.forward_default_kwargs)
|
|
num_inference_steps = kwargs.pop("num_inference_steps", None)
|
|
|
|
for scheduler_class in self.scheduler_classes:
|
|
scheduler_config = self.get_scheduler_config()
|
|
scheduler = scheduler_class(**scheduler_config)
|
|
|
|
sample = self.dummy_sample
|
|
residual = 0.1 * sample
|
|
|
|
scheduler.set_timesteps(num_inference_steps)
|
|
|
|
timestep_0 = scheduler.timesteps[-2]
|
|
timestep_1 = scheduler.timesteps[-1]
|
|
|
|
output_0 = scheduler.step(residual, timestep_0, sample, **kwargs).prev_sample
|
|
output_1 = scheduler.step(residual, timestep_1, sample, **kwargs).prev_sample
|
|
|
|
self.assertEqual(output_0.shape, sample.shape)
|
|
self.assertEqual(output_0.shape, output_1.shape)
|
|
|
|
# Override test_set_scheduler_outputs_equivalence since it uses 0 as a hardcoded timestep
|
|
def test_scheduler_outputs_equivalence(self):
|
|
def set_nan_tensor_to_zero(t):
|
|
t[t != t] = 0
|
|
return t
|
|
|
|
def recursive_check(tuple_object, dict_object):
|
|
if isinstance(tuple_object, (List, Tuple)):
|
|
for tuple_iterable_value, dict_iterable_value in zip(tuple_object, dict_object.values()):
|
|
recursive_check(tuple_iterable_value, dict_iterable_value)
|
|
elif isinstance(tuple_object, Dict):
|
|
for tuple_iterable_value, dict_iterable_value in zip(tuple_object.values(), dict_object.values()):
|
|
recursive_check(tuple_iterable_value, dict_iterable_value)
|
|
elif tuple_object is None:
|
|
return
|
|
else:
|
|
self.assertTrue(
|
|
torch.allclose(
|
|
set_nan_tensor_to_zero(tuple_object), set_nan_tensor_to_zero(dict_object), atol=1e-5
|
|
),
|
|
msg=(
|
|
"Tuple and dict output are not equal. Difference:"
|
|
f" {torch.max(torch.abs(tuple_object - dict_object))}. Tuple has `nan`:"
|
|
f" {torch.isnan(tuple_object).any()} and `inf`: {torch.isinf(tuple_object)}. Dict has"
|
|
f" `nan`: {torch.isnan(dict_object).any()} and `inf`: {torch.isinf(dict_object)}."
|
|
),
|
|
)
|
|
|
|
kwargs = dict(self.forward_default_kwargs)
|
|
num_inference_steps = kwargs.pop("num_inference_steps", 50)
|
|
|
|
timestep = self.default_valid_timestep
|
|
|
|
for scheduler_class in self.scheduler_classes:
|
|
scheduler_config = self.get_scheduler_config()
|
|
scheduler = scheduler_class(**scheduler_config)
|
|
|
|
sample = self.dummy_sample
|
|
residual = 0.1 * sample
|
|
|
|
scheduler.set_timesteps(num_inference_steps)
|
|
kwargs["generator"] = torch.manual_seed(0)
|
|
outputs_dict = scheduler.step(residual, timestep, sample, **kwargs)
|
|
|
|
scheduler.set_timesteps(num_inference_steps)
|
|
kwargs["generator"] = torch.manual_seed(0)
|
|
outputs_tuple = scheduler.step(residual, timestep, sample, return_dict=False, **kwargs)
|
|
|
|
recursive_check(outputs_tuple, outputs_dict)
|
|
|
|
def full_loop(self, num_inference_steps=10, seed=0, **config):
|
|
scheduler_class = self.scheduler_classes[0]
|
|
scheduler_config = self.get_scheduler_config(**config)
|
|
scheduler = scheduler_class(**scheduler_config)
|
|
|
|
model = self.dummy_model()
|
|
sample = self.dummy_sample_deter
|
|
generator = torch.manual_seed(seed)
|
|
|
|
scheduler.set_timesteps(num_inference_steps)
|
|
|
|
for t in scheduler.timesteps:
|
|
residual = model(sample, t)
|
|
sample = scheduler.step(residual, t, sample, generator).prev_sample
|
|
|
|
return sample
|
|
|
|
def test_full_loop_onestep(self):
|
|
sample = self.full_loop(num_inference_steps=1)
|
|
|
|
result_sum = torch.sum(torch.abs(sample))
|
|
result_mean = torch.mean(torch.abs(sample))
|
|
|
|
# TODO: get expected sum and mean
|
|
assert abs(result_sum.item() - 18.7097) < 1e-3
|
|
assert abs(result_mean.item() - 0.0244) < 1e-3
|
|
|
|
def test_full_loop_multistep(self):
|
|
sample = self.full_loop(num_inference_steps=10)
|
|
|
|
result_sum = torch.sum(torch.abs(sample))
|
|
result_mean = torch.mean(torch.abs(sample))
|
|
|
|
# TODO: get expected sum and mean
|
|
assert abs(result_sum.item() - 197.7616) < 1e-3
|
|
assert abs(result_mean.item() - 0.2575) < 1e-3
|
|
|
|
def test_custom_timesteps(self):
|
|
scheduler_class = self.scheduler_classes[0]
|
|
scheduler_config = self.get_scheduler_config()
|
|
scheduler = scheduler_class(**scheduler_config)
|
|
|
|
timesteps = [100, 87, 50, 1, 0]
|
|
|
|
scheduler.set_timesteps(timesteps=timesteps)
|
|
|
|
scheduler_timesteps = scheduler.timesteps
|
|
|
|
for i, timestep in enumerate(scheduler_timesteps):
|
|
if i == len(timesteps) - 1:
|
|
expected_prev_t = -1
|
|
else:
|
|
expected_prev_t = timesteps[i + 1]
|
|
|
|
prev_t = scheduler.previous_timestep(timestep)
|
|
prev_t = prev_t.item()
|
|
|
|
self.assertEqual(prev_t, expected_prev_t)
|
|
|
|
def test_custom_timesteps_increasing_order(self):
|
|
scheduler_class = self.scheduler_classes[0]
|
|
scheduler_config = self.get_scheduler_config()
|
|
scheduler = scheduler_class(**scheduler_config)
|
|
|
|
timesteps = [100, 87, 50, 51, 0]
|
|
|
|
with self.assertRaises(ValueError, msg="`custom_timesteps` must be in descending order."):
|
|
scheduler.set_timesteps(timesteps=timesteps)
|
|
|
|
def test_custom_timesteps_passing_both_num_inference_steps_and_timesteps(self):
|
|
scheduler_class = self.scheduler_classes[0]
|
|
scheduler_config = self.get_scheduler_config()
|
|
scheduler = scheduler_class(**scheduler_config)
|
|
|
|
timesteps = [100, 87, 50, 1, 0]
|
|
num_inference_steps = len(timesteps)
|
|
|
|
with self.assertRaises(ValueError, msg="Can only pass one of `num_inference_steps` or `custom_timesteps`."):
|
|
scheduler.set_timesteps(num_inference_steps=num_inference_steps, timesteps=timesteps)
|
|
|
|
def test_custom_timesteps_too_large(self):
|
|
scheduler_class = self.scheduler_classes[0]
|
|
scheduler_config = self.get_scheduler_config()
|
|
scheduler = scheduler_class(**scheduler_config)
|
|
|
|
timesteps = [scheduler.config.num_train_timesteps]
|
|
|
|
with self.assertRaises(
|
|
ValueError,
|
|
msg="`timesteps` must start before `self.config.train_timesteps`: {scheduler.config.num_train_timesteps}}",
|
|
):
|
|
scheduler.set_timesteps(timesteps=timesteps)
|